
1

CS3157: Advanced
Programming

Lecture #11
Mar 27

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Wrap up pointers
• File manipulations
• Working with text
• Wrap up C
• Intro CPP

2

Announcements

• Will be posting homework project 2 this
week

• If you are having a problem/idea/anything
please stop by office hours

From last time

• Struct and typedefs

• How?

• Why?

3

Back to Pointers

• Pointers is what makes c so powerful
• From what I’ve seen in the lab there are a

few things which are important but
overlooked by some

• Here is more info that might put everything
in perspective

Array

• int a[4];
• a[0] = 2; a[2] = 6;
• a[1] = 3; a[3] = 4;

• a[i] *(a+i)
• Reason: a &a[0]
• Why can’t we say a++ ??

4

Pointers

• int *ptr = a;

• ptr[i] *(a+i)

• What is wrong with this:
• *ptr = (int*)malloc(sizeof(int)*10);

Practical example

• Say I am going to take everyone’s age in
the room (example 30 students)….will
input one at a time, and want a sorted list
all the time

• How would your c program look like ?

5

array

• Create the n size array
• Get number
• Figure where it goes
• Move everyone over to make place

pointer

• How to do it with pointers?

6

Quick question: Output?
#include<stdio.h>
#include<stdlib.h>

int main(){
typedef int mag[3][3];

printf("testing size of method\n");

printf("A single int is %d\n",sizeof(int));

printf("the 3 by 3 array is of size : %d\n",sizeof(mag));

return 0;

}

• testing size of method
• A single int is 4
• the 3 by 3 array is of size : 36

7

• First we define:
struct ELEMENT {int value; struct ELEMENT
*next; };

struct ELEMENT list;
list.next = (struct
ELEMENT*)malloc(sizeof(struct ELEMENT));

• list.value = 20;

(*list.next).value = 22;
printf("val is %d\n",list.next->value);

Dealing with lists

• Usually easier to use a head object to start
the list

• Options:
– last node will be null (end of list)
– Last node can link to first (easier to traverse)
– Add back links to allow faster walkthroughs

8

compare

• So if I have 10 items

• Whats the difference between an array
and linked list?

Working with lists
void add(llnode **head, int data_in) {
llnode *tmp;
if ((tmp = malloc(sizeof(*tmp))) == NULL){
ERR_MSG(malloc);
void)exit(EXIT_FAILURE);
}

tmp->value = data_in;
tmp->next = *head;
*head = tmp;
}

9

/* ... inside some function ... */

llnode *head = NULL;
......

add(&head, some_data);

Reminder

• Your mother is right when she told you
clean after yourself!

• How to clean up the list?

10

void freelist(llnode *head) {
llnode *tmp;

while (head != NULL) {
free(head->data);
tmp = head->next;
free(head); head = tmp;
}

}

Text based programming

• Many application of computer science

• Spell checking
• Learning
• Modeling
• compression

11

• On the computer text (characters) are
represented fix length set of bits

• 7 bits for ASCII

• Can we do better than that?

Compression

• If we can use less bits for higher occurring
characters, overall we will use less bits in
our text file

12

Binary tree

• Let me introduce a data structure to you

• A binary tree has a node with optional left
and right children

• Think of it as a linked list with two links

Hoffman compression

1. Create a frequency count of each of your
characters in your file

2. Start to build a binary tree always
combining 2 lowest frequencies into one
tree the resulting frequency is the
combined frequencies

3. Going left is 0, going right is 1

13

Example

• If I counted:
• E = 29
• A = 14
• T = 10
• B = 4
• D = 2
• C = 1

decompression

• So seeing a code, we simply run down the
tree

• As soon as we hit a leaf, translate to that
character

14

Compressing text

• How would you use huffman to compress
text??

File manipulations
• FILE *fopen (const char *path, const char *mode);

• FILE *Fp;
• Fp = fopen("/home/johndoe/input.dat", "r");

• fscanf(Fp, "%d", &x);

• fprintf(Fp, "%s\n", "File Streams are cool!");

• int fclose(FILE *stream);

15

Command line arguments

• Many times you want to pass in specific
information to your program as command
line args

• Tool for helping you do this:

int getopt(int argc, char * const argv[], const char
*optstring);

extern char *optarg;

extern int optind, opterr, optopt;

16

Change main method

• int main(int argc, char **argv)

• ./junk -b something data.txt

int ich;

while ((ich = getopt (argc, argv, "ab:c")) != EOF) {
switch (ich) {

case 'a': /* Flags/Code when -a is specified */
break;

case 'b': /* Flags/Code when -b is specified */
/* The argument passed in with b is specified */

/* by optarg */
break;

case 'c': /* Flags/Code when -c is specified */
break;

default: /* Code when there are no parameters */
break;

}
}

if (optind < argc) {
printf ("non-option ARGV-elements: ");
while (optind < argc)

printf ("%s ", argv[optind++]);
printf ("\n");

}

17

Shift Gears

• Hopefully you feel comfortable looking at c and
working in c.

• Some background:
– Why are we covering all these languages so quickly?
– What are you supposed to be taking out of the

course?
– How does c++ fit into this?
– Bottom line

• Intro to c++

differences between c++ and c
– history and background
– object-oriented programming with classes

• very brief history...
– C was developed 69-73 at Bell labs.
– C++ designed by Bjarne Stroustrop at AT&T Bell

Labs in the early 1980’s
– originally developed as “C with classes”
– Idea was to create reusable code
– development period: 1985-1991
– ANSI standard C++ released in 1991

18

Four main OOP concepts
• abstraction

– creation of well-defined interface for an object, separate from its
implementation

– e.g., Vector in Java
– e.g., key functionalities (init, add, delete, count, print) which can be

called independently of knowing how an object is implemented
• encapsulation

– keeping implementation details “private”, i.e., inside the implementation
• hierarchy

– an object is defined in terms of other objects
– Composition => larger objects out of smaller ones
– Inheritance => properties of smaller objects are “inherited” by larger

objects
• polymorphism

– use code “transparently” for all types of same class of object
– i.e., “morph” one object into another object within same hierarchy

Basic differences

• Before we talk about OOP, lets discuss
language differences:

1. Naming Conventions of files
2. Comments styles
3. Struct treated differently
4. I/O redesigned
5. Function abstraction enforced

19

Hello.cpp
#include <iostream.h>
#include <stdio.h>
main() {
cout << "hello world\n";
cout << "hello" << " world" << "\n";
printf("hello yet again!\n");
}

• compile using:
g++ hello.cpp -o hello

• like gcc (default output file is a.out)

For Wednesday

• Read up on c file handling
• Read up on structs, linked lists, nodes,

huffman algorithm

• Get c++ book and read intro parts on
language and basic usage

