
1

CS3157: Advanced
Programming

Lecture #10
Mar 20

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcement

• Welcome back from spring break
• Hope you’ve caught up with your courses
☺

• Have the exams back, will return at the
end of class

2

Announcements

• Based on feedback for the lab component:
– Reading
– Comprehension
– Will try to include relevant reading for lab, but

the easiest way to get started
• Look over the class notes (BEFORE)
• Read the instructions
• Ask me ÅÅÅ

Outline
• Much more C

– Pointers
– Const
– Typedef
– Union
– Enum

• Reading:
– K & R 5.5-,6
– Deitel chapter 7

3

Outline for rest of semester

• Will cover basic c then basic/advanced
C++

• Shell programming
– Useful
– Looks like its coming to windows soon (finally)

• PHP / webscripting
• Advanced topics

Pointers

• Make sure you feel comfortable with the
idea of what is happening inside pointer

• Will try to use examples today to make
specific points

4

int main(){
int number = 10;
foo(&number);
return 0;

}

void foo(int *p){
*p = 30;
}

Question

• Whats the advantage of passing in by
pointer reference ?

• What is the problem?

• How would we solve it?

5

const

• Allows the compiler to know which values
shouldn’t be modified

• Added in to c later

• Example:
const int a = 5;

void foo(const int x) { }

const

• Better than #define since error message
will be easier to understand since
preprocessor not involved

• Very useful in functions to either return
const or make sure a pointer doesn’t alter
the original object

6

Const pointer to non-const
• This is a pointer which always points to same

location, but the value can be modified

• int * const ptr = &x;

*ptr = ??
can’t say
ptr = & ??

• Example2: array name

Const pointer to const data

• Int x = 200;
• const int * const ptr = &x;

7

• Some confusion
– int const * X
– const int * X //variable pointer to const
– int * const Y //const pointer to int
– int const * const Z //const point to const

Pointers to functions

• C allows you to also pass around a pointer
to a function

• void foo (int , int (*) (int , int));

• int example1(int x, int y) { return x+y; }

• foo(5, example1);

8

• void foo(int a, int (*A)(int,int)){

if((*A)(5,10) > 0){

}
else {

}

}

Creating your own types

• Equivalent to a class idea in other
programming languages, you can define
your own types in c

struct name {

types
}

9

example

struct point {
int x;
int y;
}

• Usage:
struct point a;
a.x = 5;
a.y = 10;

Anonymous structs

• Can also create anonymous structs
struct {

int x;
int y;
} a, b;

10

Nesting

struct rect {
struct point pt1;
struct point p2;

}

• Use:
struct rect largeScreen;

Making space
• Remember in the proceeding examples, simple

types so memory is automatically allocated (in a
sense).

• struct student {
char * name;
int age;

}

struct student a;
a.name = (char*)malloc(sizeof(char)*25));
…

11

Use in functions

struct point makePoint(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}

Operations

• Copy
• Assignments
• & (addressing)
• Accessing members

• How do we compare 2 structs

12

Structs and pointers
• struct point *example
= (struct point *)malloc(sizeof(struct
point));

• (*example).x

what does
*example.x mean?

Shortcut:
example->x

typedef
• defining your own types using typedef (for ease

of use)
typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;
byte b;
String name;

13

enum
• define new integer-like types as enumerated types:
enum weather { rain, snow=2, sun=4 };
typedef enum {
Red, Orange, Yellow, Green, Blue, Violet
} Color;

• look like C identifiers (names)
• are listed (enumerated) in definition
• treated like integers

– start with 0 (unless you set value)
– can add, subtract — e.g., color + weather
– cannot print as symbol automatically (you have to write code to

do the translation)

enum
• just fancy syntax for an ordered collection of integer

constants:
typedef enum {
Red, Orange, Yellow
} Color;
• is like
#define Red 0
#define Orange 1
#define Yellow 2

• here’s another way to define your own boolean:
typedef enum {False, True} boolean;

14

Usage

enum Boolean {False, True};

...
enum Boolean shouldWait = True;
...
if(shouldWait == False) { .. }

struct
int main() {
struct {
int x;
char y;
float z;
} rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z
);

} // end of main()

15

struct
int main() {
struct record {
int x;
char y;
float z;
};
struct record rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);
} // end of main()

int main() {
typedef struct {
int x;
char y;
float z;
} RECORD;

RECORD rec;
rec.x = 3;
rec.y = ’a’;
rec.z = 3.1415;
printf("rec = %d %c %f\n",rec.x,rec.y,rec.z);
} // end of main()

16

• note the use of malloc where “sizeof” takes the struct type as its
argument (not the pointer!)

int main() {
typedef struct {
int x;
char y;
float z;
} RECORD;
RECORD *rec = (RECORD *)malloc(sizeof(RECORD));
rec->x = 3;
rec->y = ’a’;
rec->z = 3.1415;
printf("rec = %d %c %f\n",rec->x,rec->y,rec->z);
} // end of main()

Important to understand
• overall size of struct is the sum of the elements, plus padding for alignment

(i.e., how many bytes are allocated)
• given previous examples: sizeof(rec) -> 12
• but, it depends on the size and order of content (e.g., ints need to be

aligned on word boundaries, since size of char is 1 and size of int is 4):

struct {

char x;

int y;

char z;

} s1;

/* x y z */

/* |----|----|----| */

/* sizeof s1 -> 12 */

struct {

char x, y;

int z;

} s2;

/* xy z */

/* |----|----| */

/* sizeof s2 -> 8 */

17

Reminder
• pointers to structs are common — especially useful with functions (as

arguments to functions or as function type)
• two notations for accessing elements: (*sp).field or sp->field
• (note: *sp.field doesn’t work)
struct xyz {
int x, y, z;
};
struct xyz s;
struct xyz *sp;
...
s.x = 1;
s.y = 2;
s.z = 3;
sp = &s;
(*sp).z = sp->x + sp->y;

Arrays of structs
• notations for accessing elements: arr[i].field
struct xyz {
int x, y, z;
};
struct xyz arr[2];
...
arr[0].x = 1;
arr[0].y = 2;
arr[0].z = 3;
arr[1].x = 4;
arr[1].y = 5;
arr[1].z = 6;

18

unions
• union
• like struct:
union u_tag {
int ival;
float fval;
char *sval;
} u;
• but only one of ival, fval and sval can be used in

an instance of u (think container)
• overall size is largest of elements

Example
#define NAME_LEN 40

struct person {
char name[NAME_LEN+1];
float height;

};

int main(void) {
struct person p;
strcpy(p.name,"suzanne");
p.height = 60;
printf("name = [%s]\n",p.name);
printf("height = %5.2f inches\n",p.height);

} // end of main()

19

For Next Class

• Do relevant reading
• Look over your exam, please see me if

you don’t understand/have questions

– See you in lab Wednesday

Over view of assignment

• Extend the lab example
• Integrate perl in c and cgi
• Work with graphics
• Have something cool to show off to your friends

or on interviews.

• Hints: if you are sending too much time….ask for
help
– examples

