
1

1

CS3157: Advanced
Programming

Lecture #9
Oct 31

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• Feedback
• Arrays
• Pointers
• functions
• function arguments
• arrays and pointers as function arguments

• Reading
– Chapter 5,6-6.3

3

Arrays again
• Arrays and pointers are strongly related in C
int a[10];
int *pa;
pa = &a[0];
pa = a;
• pointer arithmetic is meaningful with arrays:
• if we do
Pntr = &a[0]
• then
*(Pntr +1) =
• points to a[1]

4

• Remember difference between *(Pntr) + 1 and
(*Pntr +1)

• Note that an array name is a pointer, so we can
also do *(a+1) and in general: *(a + i) == a[i]
and so are a + i == &a[i]

• The difference:
– an array name is a constant, and a pointer is not
– so we can do: Pntr = a and Pntr ++

• But we can NOT do: a = Pntr or a++ pr or Pntr =
&a

2

5

Note

• When an array name is passed to a
function, what is passed is the beginning
of the array

6

Remember
• a pointer contains the address of an object (but

not in the OOP sense)
• allows one to access object “indirectly”
• & = unary operator that gives address of its

argument
• * = unary operator that fetches contents of its

argument (i.e., its argument is an address)
• note that & and * bind more tightly than

arithmetic operators
• you can print the value of a pointer with the

formatting character %p

7

code
#include <stdio.h>
main() {
int x, y; // declare two ints
int *px; // declare a pointer to an int
x = 3; // initialize x
px = &x;
y = *px;

printf("x=%d px=%p y=%d\n",x,px,y);
}

8

Dynamic Memory Allocation
• used when you don’t know at compile-time how much

memory to allocate
• pre-allocated memory comes from the “stack”
• dynamically allocated memory comes from the “heap”
• family of functions in stdlib, including:
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *);
• malloc and realloc return a generic pointer (void *) and

you have to “cast” the return to the type of pointer you
want

3

9

Malloc.c
#include <stdio.h>
#include <stdlib.h>
#define BLKSIZ 10
main() {
FILE *fp;
char *buf, k;
int bufsiz, i;
// open file for reading
if ((fp = fopen("myfile.dat","r")) == NULL) {
perror("error opening myfile.dat");
exit(1);

}
// allocate memory for input buffer
bufsiz = BLKSIZ;
buf = (char *)malloc(sizeof(char)*bufsiz);

10

II
// read contents of file
i = 0;
while ((k = fgetc(fp)) != EOF) {
buf[i++] = k;
if (i == bufsiz) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
}
if (i >= bufsiz-1) {
bufsiz += BLKSIZ;
buf = (char *)realloc(buf,sizeof(char)*bufsiz);

}
buf[i] = '\0';
// output file contents to the screen
printf("buf=[%s]\n",buf);
// close file
fclose(fp);

} // end main()

11

Dynamic memory
• malloc() allocates a block of memory:
void *malloc(size_t size);
• lifetime of the block is until memory is freed, with free():
void free(void *ptr);

• example:
int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

12

Memory leaking
• memory leaks— memory allocated that is never freed:
char *combine(char *s, char *t) {
u = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s != t) {
strcpy(u, s);
strcat(u, t);
return u;
}
else {
return 0;
}
} /* end of combine() */
• u should be freed if return 0; is executed
• but you don’t need to free it if you are still using it!

4

13

Example 2
int main(void) {

char *string1 = (char*)malloc(sizeof(char)*50);
char *string2 = (char*)malloc(sizeof(char)*50);
scanf(“%s”,string2);
string1 = strong2;

...
free(string2);
free(string1); ///????

return 0
}

14

Memory leak tools

• Purify
• Valgrind
• Insure++
• Memwatch
• Memtrace
• Dmalloc

15

Dynamic memory
• note: malloc() does not initialize data
• you can allocate and initialize with “calloc”:
void *calloc(size_t nmemb, size_t size);

– calloc allocates memory for an array of nmemb elements of size bytes
each and returns a pointer to the allocated memory. The memory is set
to zero.

• you can also change size of allocated memory blocks with “realloc”:
void *realloc(void *ptr, size_t size);

– realloc changes the size of the memory block pointed to by ptr to size
bytes. The contents will be unchanged to the minimum of the old and
new sizes; newly allocated memory will be uninitialized.

• these are all functions in stdlib.h
• for more information: unix$ man malloc

16

Dynamic arrays
• “arrays” are defined by specifying an element type and number of elements

– statically:
int vec[100];
char str[30];
float m[10][10];

– dynamically:
int *dynvec, num_elements;
printf("how many elements do you want to enter? ");
scanf("%d", &num_elements);
dynvec = (int *)malloc(sizeof(int) * num_elements);

• for an array containing N elements, indeces are 0..N-1
• stored as a linear arrangement of elements
• often similar to pointers

5

17

Dynamic arrays II
• C does not remember how large arrays are (i.e., no length attribute,

unlike Java)
• given:
int x[10];
x[10] = 5; /* error! */
• ERROR! because you have only defined x[0]..x[9] and the memory

location where x[10] is can become something else...

• sizeof x gives the number of bytes in the array
• sizeof x[0] gives the number of bytes in one array element
• You can compute the length of x via:
int length_x = sizeof x / sizeof x[0];

18

Arrays cont.
• when an array is passed as a parameter to a

function:
– The size information is not available inside the

function
– array size is typically passed as an additional

parameter
printArray(x, length_x);

– or globally
#define VECSIZE 10
int x[VECSIZE];

19

arrays

• array elements are accessed using the
same syntax as in Java: array[index]

• C does not check whether array index
values are sensible (i.e., no bounds
checking)

• e.g., x[-1] or vec[10000] will not generate a
compiler warning!

• if you’re lucky, the program crashes with
Segmentation fault (core dumped)

20

Dynamically allocated arrays
• C references arrays by the address of their first element
• array is equivalent to &array[0]
• you can iterate through arrays using pointers as well as

indexes:

int *v, *last;
int sum = 0;
last = &x[length_x-1];
for (v = x; v <= last; v++)
sum += *v;

6

21

Code
#include <stdio.h>
#define MAX 12
int main(void) {
int x[MAX]; /* declare 12-element array */
int i, sum;
for (i=0; i<MAX; i++) { x[i] = i; }
/* here, what is value of i? of x[i]? */
sum = 0;
for (i=0; i<MAX; i++) { sum += x[i]; }
printf("sum = %d\n",sum);
} /* end of main() */

22

Code 2
#include <stdio.h>
#define MAX 10
int main(void) {
int x[MAX]; /* declare 10-element array */
int i, sum, *p;
p = &x[0];
for (i=0; i<MAX; i++) { *p = i + 1; p++; }
p = &x[0];
sum = 0;
for (i=0; i<MAX; i++) { sum += *p; p++; }
printf("sum = %d\n",sum);
} /* end of main() */

23

2 dimensional arrays

• 2-dimensional arrays
• int weekends[52][2];
• you can use indices or pointer math to locate

elements in the array
– weekends[0][1]
– weekends+1

• weekends[2][1] is same as
*(weekends+2*2+1), but NOT the same as
*weekends+2*2+1 (which is an integer)!

24

Functions defintions
• similar to methods in java but there aren’t classes in C and functions can’t

be overloaded

• syntax:
<type> name(argument-list-if-any)
argument-declarations-if-any;
{
function-body;
return [<expression>];
}
or
<type> name(argument-list-if-any-including-declarations)

{
function-body;
return [<expression>];
}

7

25

Functions II
• A program is just a set of individual function definitions
• char promotes to int in any expression, so you don’t

need to define functions that return char (only int)
• int is the default return type
• function arguments are “passed by value”
• the function receives a temporary copy of the value of

the argument (not the argument’s address)
• functions with a variable number of arguments use the

first argument to tell it how many arguments will follow
(e.g., printf)

• function arguments
– since function arguments are “passed by value”, you can use

pointers to have a function change the value of a variable

26

swap
void swapNot(int a,int b) {

int tmp = a;
a = b;
b = tmp;

} // end swapNot()

void swap(int *a,int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

} // end swap()

27

swap
int x, y; // declare two ints
int *px, *py; // declare two pointers to ints
x = 3; // initialize x
y = 5; // initialize y

printf("before: x=%d y=%d\n",x,y);

swapNot(x,y);
printf("after swapNot: x=%d y=%d\n",x,y);

px = &x; // set px to point to x (i.e., x's address)
py = &y; // set py to point to y (i.e., y's address)

printf("the pointers: px=%p py=%p\n",px,py);

swap(px,py);
printf("after swap with pointers: x=%d y=%d px=%p py=%p\n",x,y,px,py);

// you can also do this directly, without px and py:
swap(&x,&y);
printf("after swap without pointers: x=%d y=%d\n",x,y);

28

Creating your own types

• Equivalent to a class idea in other
programming languages

struct name {

types
}

8

29

example
struct point {

int x;
int y;
}

• Can also create anonymous structs
• Usage:
struct point a,b;
a.x = 5;
a.y = 10;

30

Nesting

struct rect {
struct point pt1;
struct point p2;

}

• Use:
struct rect largeScreen;

31

Making space
• Remember in the proceeding examples, simple

types so memory is automatically allocated (in a
sense).

• struct student {
char * name;
int age;

}

struct student a;
a.name = (char*)malloc(sizeof(char)*25));
…

32

Use in functions

struct point makePoint(int x, int y)
{

struct point temp;
temp.x = x;
temp.y = y;
return temp;

}

9

33

Operations

• Copy
• Assignments
• & (addressing)
• Accessing members

• Can not compare 2 structs

34

Structs and pointers

• struct point *example;

(*example).x

what does
*example.x mean?

Shortcut:
example->x

35

Passing functions
• Say you have:

int power(int a, int b)

• Can pass into function the following way:

• char* calculate(int (* mathy)(int,int), int x, char b);
defines a function which returns a char pointer and takes
a function pointer called mathy, which returns an int and
takes 2 ints as arguments, along with and int and a char.

• Then can say:
calculate((int(*)(int,int))power(x1,x2), x35351, t);

36

Next time

• Do reading

• See you in lab Wednesday.

• Next Monday, academic holiday. (2 labs in
a row).

