
1

CS3157: Advanced
Programming

Lecture #6
Oct 3

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Feedback
• Intro to C

– Background
– Compiling
– Basic data structures
– Basic I/O
– Types conversion
– Loops
– Branching

2

Feedback

• Generally good pace of labs
• Complaints about lab workload

– 4 credit course
– Will make homework projects / class

knowledge easier in the long run
– Am trying to balance learning and amount of

effort, hard to sometime gauge effort
– Feedback essential

Roadmap

• How this all fits together
– We covered perl (duct-tape programming)
– CGI programming USING perl

– Will now move to c, which is a more low level
programming language

– Will learn to work with c, and then CGI+c
– Then CGI+perl+c etc
– Get the best of any programming language in a

project

3

Why Learn C ?

• C provides stronger control of low-level
mechanisms such as memory allocation,
specific memory locations

• C performance is usually better than Java
and usually more predictable (very task
dependant)

Why Learn c continued

• Java hides many details needed for writing
code, but in C you need to be careful because:
– memory management responsibility left to you
– explicit initialization and error detection left to you
– generally, more lines of (your) code for the same

functionality
– more room for you to make mistakes

• most older code is written in C, will need it if
upgrading or interfacing

4

Background

C
– Dennis Ritchie in late 1960s and early

1970s
– systems programming language
– make OS portable across hardware

platforms
– not necessarily for real applications—

could be written in Fortran or PL/I

Background II
C++
– Bjarne Stroustrup (Bell Labs), 1980s
– object-oriented features

Java
– James Gosling in 1990s, originally for embedded

systems
– object-oriented, like C++
– ideas and some syntax from C

5

Background III
• C is early-70s, procedural language

• C advantages:
– direct access to OS primitives (system calls)
– more control over memory
– fewer library issues— just execute

• C disadvantages:
– language is portable, but APIs are not
– no easy graphics interface
– more control over memory (i.e., memory leaks)
– pre-processor can lead to obscure errors

C vs Java
• Java program

– collection of classes
– class containing main method is starting class
– running java StartClass invokes StartClass.main method
– JVM loads other classes as required

• C program
– collection of functions
– one function – main() – is starting function
– running executable (default name a.out) starts main function
– typically, single program with all user code linked in— but can be

dynamic libraries (.dll, .so)

6

Example
• Java

public class hello {
public static void main(String[] args) {

System.out.println("hello world! ");
}

}

• C

#include <stdio.h>
int main() {
printf("hello world!");
return 0;
}

• #include <stdio.h> to include header file stdio.h
• # lines processed by pre-processor

• No semicolon at end of pre-processor lines
• Lower-case letters only— C is case-sensitive

• int main() { ... } is the only code executed

• printf(" /* message you want printed */ ");

• \n = newline, \t = tab

• \ in front of other special characters

7

C vs Java …Running
• Java programs are compiled and interpreted:

– javac converts foo.java into foo.class
– class file is not machine-specific— it is byte code
– byte code is then interpreted by JVM
– and each JVM is machine-specific

• C programs are compiled into object code and then linked into
executables

(to allow for multiple object files and libraries to be compiled together
into one program):
– gcc compiles foo.c into foo.o and then links foo.o into a.out
– you can skip writing foo.o if there is only one object file used to create

your executable
– a.out is executed by OS and hardware
– the C compiler is machine-specific, creating code that executes on

specific OS/hardware

Compiling c
• gcc is the C compiler we’ll use in this class
• it’s a free compiler from Gnu (i.e., Gnu C

Compiler)
• gcc translates C program into executable for

some target
• default file name a.out
• behavior of gcc is controlled by command-line

switches
$ gcc hello.c
$ a.out
hello world!

8

Compiling your program
two-stage compilation
1. pre-process and compile: gcc -c hello.c
2. link: gcc -o hello hello.o

linking several modules:
>gcc -c a.c -> a.o
>gcc -c b.c -> b.o
>gcc -o hello a.o b.o

using a library, for example the “math” library (libm):
>gcc -o calc calc.c -lm

Compiling problems
• errors can come from multiple sources:

– pre-processor: missing include files
– parser: syntax errors
– assembler: rare
– linker: missing libraries and references
– e.g., undefined names will be reported when linking:

undefined symbol first referenced in file
_print program.o
ld fatal: Symbol referencing errors
No output written to file.

• if gcc gets confused, there can be hundreds of messages!
– fix first message first, and then retry— ignore the rest

• gcc will produce an executable with warnings
• gcc is more forgiving than javac!

9

c pre-processor
• the C pre-processor (cpp) is a macro-processor which

– manages a collection of macro definitions
– reads a C program and transforms it
– pre-processor directives start with # at beginning of line

• used to:
– include files with C code (typically, “header” files containing

definitions; file names end with .h)
– define new macros (later – not today)
– conditionally compile parts of file (later – not today)

• gcc -E shows output of pre-processor
• can be used independently of compiler

pre-processor II
• file inclusion
#include "filename.h"
#include <filename>
• inserts contents of filename into file to be compiled
• "filename.h" relative to current directory
• <filename> relative to /usr/include or in default path (specified by -I

compiler directive); note that file is named verb+filename.h+

• import function prototypes (in contrast with Java import) (more about
function prototypes later)

• examples:
#include <stdio.h>
#include "mydefs.h"
#include "/home/shlomo/programs/defs.h"

10

Comments
1. /* any text until this */

2. // until end of line

• convention for longer comments:
/*
* AverageGrade()
* Given an array of grades, compute the average.
*/

• avoid **** boxes - hard to edit, usually look ragged.

Data Types
• Very important when

trying to resource
memory/cpu

• float has 6 bits precision
• double has 15 bits

precision
• Range can change

depending on machine
type, generally int is
native to the machine
type 64double

32float

32long

32int

16short

8char

BytesType

11

Types II

• unsigned char
• unsigned short
• unsigned int
• unsigned long

• Byte size is the same, but can now have
greater range

• /usr/include/limits.h

Library

• Access libraries using the include
statement

• Generally include the header file
• Compiler links them automatically
• Example:

– stdio.h
– Try:

man stdio

12

stdio.h

• Access stdio functions by
– using #include <stdio.h>
– compiler links it automatically

• defines stdin, stdout, stderr
• use for character, string and file I/O (later)

• printf
– %[flags][width][.precision][modifiers]type

13

stdio.h : printf, type specifier
• int printf(const char *format, ...) formatted output to stdout

B800:0000Address pointed by the argumentp

Nothing printed. The argument must be a pointer to integer where
the number of characters written so far will be stored.

n

7FAUnsigned hexadecimal integer (capital letters)X

7faUnsigned hexadecimal integerx

7235Unsigned decimal integeru

sampleString of characterss

610Signed octalo

392.65Use shorter %E or %fG

392.65Use shorter %e or %fg

392.65Decimal floating pointf

3.9265E2Scientific notation (mantise/exponent) using E characterE

3.9265e2Scientific notation (mantise/exponent) using e charactere

392Signed decimal integerd or i

aCharacterc

printf flags

• %[flags][width][.precision][modifiers]type

Used with g or G the result is the same as
e or E but trailing zeros are not removed.

Used with e, E or f forces the output value
to contain a decimal point even if only
zeros follow.

Used with o, x or X type the value is
preceeded with 0, 0x or 0X respectively if
non-zero.

#

If the argument is a positive signed value,
a blank is inserted before the number.

Blank

Forces to preceed the result with a sign (+
or -) if signed type. (by default only -
(minus) is printed).

+

Left align within the given width. (right
align is the default).

-

14

example

int class_size = 35;
char *class_name = “3157 adv prog”;

printf(“Welcome to our test program\n”);

printf(“the %s class size is %d”,
class_name, class_size);

stdio.h: scanf
• int scanf(const char *format, ...) formatted output to stdout

15

Example: scanf/printf
#include <stdio.h>
void main(void) {
int n = 0; /* initialization required */
printf("how much wood could a woodchuck chuck\n");
printf("if a woodchuck could chuck wood?"); /* prompt user

*/
scanf("%d",&n); /* read input */
printf("the woodchuck can chuck %d pieces of wood!\n",n

);
return;
}

output

$ a.out
how much wood could a woodchuck chuck
if a woodchuck could chuck wood? 12345
the woodchuck can chuck 12345 pieces of

wood!

16

Loops
• loops in C are just like in Java

• there are 2 methods for looping:
– counter-controlled (loop for a fixed number of times)
– sentinal-controlled (loop while a condition is true)

• there are 3 statements for implementing the 2 methodologies:
– for
– while
– do...while

• as always: beware the infinite loop!

• Ctrl-C interrupts your executing C program

• exercise: can you write 6 loops, one for each method-statement
combination?

Branching
• branching in C is just like in Java

• there are 2 ways to do branching:
– if/else
– switch

• questions:
– which is more flexible and powerful?
– one can always be translated into the other, but not

the other way around— which is which?

17

For next time:

• Lab on Wednesday
• For anyone observing Jewish new year, I

will have extra lab hours Thursday 2-4.

