
1

CS3157: Advanced
Programming

Lecture #3
Sept 14

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• Feedback
• Regular Expressions
• Graphics
• Library Modules
• Creating a library

• Reading: Chapter 4,5 (pg-167)

2

3

Feedback from last class

• More code
• Slides online
• Pace of course

4

Announcement

• Bill gates will be on campus October 13,
tickets will be available fcfs basis

• Keep eyes open

3

5

Homework 1

• Download from webpage
www.columbia.edu/~cs3157

• use perl in a practical project
• Learn about computer security

6

Computer Security

• System and theory of ensuring the
confidentiality, integrity, availability,
and control of electronic information
and systems.
– Network
– Host
– Data

4

7

For host based security

• Want to ensure permission system
– X should only be allowed to do A, B, and C

• Want to ensure accountability
– If Y does something not allowed, should be

noted
• Want to be able to track

– If something has been tampered with, how
can we locate it

– Both preventative and reactionary

8

Project

• Assuming you are a system administrator
or just paranoid

• Take chronological snapshots of your
system to compare and find changes
– Many changes by system
– Many changes by valid user
– Might locate malicious user/system changes

5

9

Useful tips

• Can turn on warning to help prevent errors
• Run in strict mode to catch potential

mistypes
• Create debugging statements to help chart

progress throughout program…
• Better yet, learn to use the perl debugger

(next week).

10

Doing the work

• Find a good perl environment
• Read up on perl
• Can work

– Home
– Clic lab
– Home, remote on clic machine

6

11

TOOLS: VNC

• www.realvnc.com

• Start server on a clic machine:
– vncserver

– Run client on your side

– demo

12

Regular Expression

• Review
• new examples

7

13

Regular Expressions
• simplest regular expression is a literal string

• complex regular expressions use metacharacters to
describe various options in building a pattern.

(pipe) matches either the expression before or after it|

groups expressions(...)

matches any one of the class of characters in the brackets[...]

specifies a range of occurrences for the element preceding it{ ... }

matches the preceding element 0 or 1 times?

matches the preceding element 1 or more times+

matches the preceding element 0 or more times*

matches at the end of a string$

matches at the beginning of a string^

matches any single character except newline.

escapes the character immediately following it\

14

Basic

• The most basic match is:
– $string =~ m/sought_text/;
– Will return true if sought_text is part of

string, false otherwise
– Perl assume m/???/ when use /???/

1) if (/shlomo/) {….}
2) if (not /shlomo/) {…}

if($_ !~ /shlomo/) {….}

8

15

Basic II

1. if ($a =~ /s|h|m/) {…..}
2. if ($a =~ /[a-z]/) {…}

3. How would we look for a phone number?

4. What about a social security?

16

Pattern attributes

• operators:
– m/pattern/gimosx : match

• g = match globally (all instances)
• i = do case insensitive matching
• e = evaluate right side as an expression
• s = let . match newlines
• m = $ and ^ can refer to inside newlines

9

17

groups
To allow groups of alternative choices

if($string =~ /(A|E|I|O|U|Y)/i)
{ print "String contains a vowel!\n“; }

Alternatively we can also specify character choices:
if($string =~ /[AEIOUY]/i)
{ print "String contains a vowel!\n“; }

Can also specify ranges
if($string =~ /^[a-e]/I) {

something
}

18

Groups II

• To allow us to reference for selection and
subsitution

• Each group can be referred to by scalar
$1, $2, $3 ….

Example
• “From s@aol.com Wed Jun 3 12:12:12 2005”
• If(/^From (.*) (…) (…) (.*)$/)

10

19

shortcuts

$name = “advanced programming class”

if($name =~ /programming/){
print $` ;
print $& ;
print $’ ;
}

20

subsitutions

• s/pattern/pattern/

11

21

transliteration

• tr/search_list/replacement_list/

• -c all characters not in the search list
• -d anything without replacement …delete
• -s squash dublicates

22

quantifiers

• ba*b
• ba{3,5}b
• ba{1}b
•

12

23

Buffer Overflow

• What is it?

24

Security

• Should use pattern matches as a security
check on input

• Example:

unless ($year =~ /^\d\d$/) {
die (“problem with year input!”);

}

13

25

hashes

• A hash function is a function that converts
an input from a (typically) large domain
into an output in a (typically) smaller range

• Example:
– Map each name in the class to a somewhat

unique number
• Collision = when different keys map to the

same output.

26

Use of hashes

• Hash tables
– Data structure
– Unordered list, fast lookup

• Cryptography
• Data processing

14

27

MD5 Sum

• MD5 – uses a 128 bit hash value
• Designed in 1991
• Known problems with collision attacks
• http://www.ietf.org/rfc/rfc1321.txt
• http://en.wikipedia.org/wiki/MD5

28

Using Perl Libraries

15

29

30

16

31

Digests
• The 128-bit (16-byte) MD5 hashes (also termed

message digests) are typically represented as 32-digit
hexadecimal numbers.

• Even small change can result in a totally different hash
digest

• MD5("The quick brown fox jumps over the lazy dog") =
– 9e107d9d372bb6826bd81d3542a419d6

• MD5("The quick brown fox jumps over the lazy cog") =
– 1055d3e698d289f2af8663725127bd4b

• MD5(“”)
– d41d8cd98f00b204e9800998ecf8427e

32

MD5 Attacks

• Recent work has found flaws with the MD5
sum.

• Will not consider this in our class.

17

33

scope

• Default scope is main
• $name can also be referred to as
$main::name

• package NAMESPACE
– Within any block of code, can declare that the

rest of the code will belong to a specific
namespace

34

Scope II

• my
declares the variable and value local to the
current scope

• our
confines the name to local scope

• local
confines the value to local scope

• More than one variable in parenthesis!!

18

35

What exactly is a module

• Collection of useful subroutines or objects
for a specific task

36

Creating a simple library

• Will do it in next weeks lab

19

37

Graphics

#!c:\perl\bin
use Tk;

my $mwin = MainWindow->new;

$mwin->Button(-text => "Hello World!", -
command => sub{exit})->pack;

MainLoop;

38

Graphics

• Will not cover in depth
• Good to know about
• Might need to one day debug someone

else’s code (GASP!)

20

39

For next time

• Reading
• Make sure you have cs account for next

week lab
• Start sketching the homework

