
1

CS3157: Advanced
Programming

Lecture #2
Sept 12

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Feedback
• Introduction to Perl review and continued
• Intro to Regular expressions

• Reading
– Programming Perl pg 1-45

2

Feedback from last class
• More computer science background
• Better board presentation

– Will move examples to laptop screen easier to follow
and illustrate.

– You will need to let me know if you need more time to
read something presented.

• Very varied skill set, a lot of programming
experience and backgrounds
– Hardware
– Software
– educational

Last plug

• One of the points of computer science is to
teach you how to think, learn, and analyze
computational related information.

• Each course is a tool which you will collect
for later use.

• Lots of tools in this course, since we will
be covering many different topics and
subjects.

3

Welcome again
• Perl

– History
– Version 5.6+

• What is it?
– Scripting language
– Aims to be a USEFUL language
– Base + tons of libraries
– Both a compiler and byte code executable

• Where to get it?
– cpan.org
– www.activestate.com/Products/ActivePerl/

Conventions
• Something.pl

– version: >perl –v
– Location: >which perl

• First line of script
– Linux: #!/usr/bin/perl
– Windows: #!c:\perl\bin

• comment lines
– Hash (#) to the end of the line

• Can make the perl script executable
(chmod +x command).

4

Structure
• Whitespace

– only needed to separate terms
– all whitespace (spaces, tabs, newlines) are treated the same
– Use them to make the code look nice, easier to look over

• Semicolons
– every simple statement must end with one
– except compound statements enclosed in braces (i.e., no

semicolon needed after the brace)
– except final statements within braces

• Declarations
– only subroutines and report formats need explicit declarations
– otherwise, variables in perl are like in shell scripts — they are

declared and initialized all at once

Variables

• Variables
– Data dependant
– No space
– names consist of letters, digits, underscores;

up to 255 chars
– CASE SENSITIVE
– Should start with letter or underscore
– Initialized variables have the value of undef

5

Data types

• scalars ($)
• arrays (@)
• hashes (%)
• subroutine(&)
• typeglob(*)

Scalars
• Starts with $

– $first
– $course

• int, real, string
• 234
• -89
• 36.34
• “hello world”

• Context dependant
– $name = “shlomo”;
– $name = 123;

6

Arrays

• Starts with @
• Order list of scalars
• @class3157 = (“shlomo”,”weijen”,”edward”);

• To reference elements, use the variable
name with a dollar in front and subscript

• $class3157[0]; #is shlomo
• What is

1) $class3157[-1];
2) $a = @class3157;

Hashes

• name/values pairs
• %phonelist = {shlomo=>718, barry=>345};

or
%phonelist = {“shlomo”,718,”barry”,345};

• Use the name to find the value
$phonelist{“shlomo”} #is 718

• Any other ideas for this?

7

Variables II

• Local
• Global
• Special

Programming statements
• simple statements are expressions that get

evaluated
• they end with a semicolon (;)
• a sequence of statements can be contained in a

block, delimited by braces ({ and })
• the last statement in a block does not need a

semicolon
• blocks can be given labels:
myblock: {
print "hello class\n";
}

8

Conditional Statements
1. simple if

if (expression) {block} else {block}

2. unless

unless (expression) {block} else {block}

3. compound if
if (expression1) {block}
elsif (expression2) {block}
...
elsif (expressionN) {block}
else {block}

Loops

• while
• for
• foreach

9

while
syntax:

while (expression) {block}

example

#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;
$i=0;

while ($i < $a) {
print "i=",$i," b[i]=",$b[$i],"\n";
$i++;

}

for
syntax:

for (expression1; expression2; expression3) {block}

example:

#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;
for ($i=0; $i<$a; $i++) {

print "i=",$i," b[i]=",$b[$i],"\n";
}

10

foreach
syntax:

foreach var (list) {block}

example:

#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;

foreach $e (@b) {
print "e=",$e,"\n";

}

Controlling loops

• next
within a loop allows you to skip the current
loop iteration

• last
allows you to end the loop

• test3.pl

11

Modifiers
• you can follow a simple statement by an if, unless, while or until modifier:
statement if expression;
statement unless expression;
statement while expression;
statement until expression;

• example:
#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;

print "hello world!\n" if ($a < 10);
print "hello world!\n" unless ($a < 10);
#print "hello world!\n" while ($a < 10);
print "hello world!\n" until ($a < 10);

Operators
you can follow a simple statement by an if, unless, while or until modifier:
• statement if expression;
• statement unless expression;
• statement while expression;
• statement until expression;

example:
#!/usr/bin/perl
@b = (2,4,6,8);
$a = @b;

print "hello world!\n" if ($a < 10);
print "hello world!\n" unless ($a < 10);
print "hello world!\n" until ($a < 10);

#print "hello world!\n" while ($a < 10);

12

Sample #1
#!c:\perl\bin
($first,$last) = &getname();
print "First is $first";

#return the fill name as a string
sub getname(){
return "shlomo hershkop";
}

#return name split
sub getname(){

return ("shlomo","hershkop");
}

Reserved variables
there’s a (long) list of global special variables...
a few important ones:

$_ = default input and pattern-searching string

example:

#!/usr/bin/perl
@b = (2,4,6,8);

foreach (@b) {
print $_,"\n";

}

13

Reserved II
• $/ = input record separator (default is newline)
• $$ = process id of the perl process running the script
• $< = real user id of the process running the script
• $0 = (0=zero) name of the perl script
• @ARGV = list of command-line arguments
• %ENV = hash containing current environment
• STDIN = standard input
• STDOUT = standard output
• STDERR = standard error

Operators
• unary:

1. ! : logical negation
2. - : arithmetic negation
3. ˜ : bitwise negation

• arithmetic
1. +,-,*,/,% : as you would expect
2. ** : exponentiation

• relational
1. >, <=, <=, <= : as you would expect

• equality
1. ==, != : as you would expect
2. <=> : comparison, with signed result:
3. returns -1 if the left operand is less than the right;
4. returns 0 if they are equal;
5. returns +1 if the left operand is greater than the right

14

Operators II

assignment, increment, decrement
• =
• +=, ++
• -=, --
• *=, **=, /=, %=
• &&=, ||=

just like in C

Working with files
• open(FILEHANDLE, filename); : to open a file for reading
• open(FILEHANDLE, >filename); : to open a file for writing
• open(FILEHANDLE, >>filename); : to open a file for appending

• use || warn print "message"; or || die print "message"; for error checking

• print FILEHANDLE, ...;

• close(FILEHANDLE);

example:
#!/usr/bin/perl
open(MYFILE,">a.dat");
print MYFILE "hi there!\n";
print MYFILE "bye-bye\n";
close(MYFILE);

15

Example II
#!/usr/bin/perl
open(MYFILE2,"b.dat") || warn "file not
found!";

open(MYFILE2,"a.dat") || die "file not
found!";

while (<MYFILE2>) { print "$_\n" }

close(MYFILE2);

Subroutine
• syntax for defining:
sub name {block}
sub name (proto) {block}

• where proto is like a prototype, where you put in sample arguments

• syntax for calling:
name(args);
name args;

• any arguments passed to a subroutine come in as the array @_

16

Built in functions
• chomp $var
• chomp @list
removes any line-ending characters

• chop $var
• chop @list
removes last character

• chr number
returns the character represented by the ASCII value number

• eof filehandle
returns true if next read on filehandle will return end-of-file

• exists $hash{$key}
returns true if specified hash key exists, even if its value is undefined

• exit
exits the perl process immediately

More built in
• getc filehandle
reads next byte from filehandle

• index string, substr [, start]
returns position of first occurrence of substr in string, with optional starting position; also
• rindex which is index in reverse

• opendir dirhandle, dirname
opens a directory for processing, kind of like a file; use readdir and closedir to process

• split /pattern/, string [, limit]
splits string into a list of substrings, by finding delimiters that match pattern;

example: split /([-,])/,"1-10,20"; returns (1, ’-’, 10, ’,’, 20)

• substr string, pos [, n, replacement]
returns substring in string starting with position pos, for n characters

17

Strict mode

• This isn’t about the midterm
• Tells perl to only allow variable you

explicitly create in your programs
– Prevents typos
– Easier to maintain
– Less work for interpreter

Perl References
• there are lots and lots of advanced and funky things you

can do in perl; this is just a start!

here’s a quick start reference:
• http://www.comp.leeds.ac.uk/Perl/
• http://www.perl.com
• http://www.perl.com

function reference list is here:
• http://www.perldoc.com/perl5.6/pod/perlfunc.html

18

Regular Expressions
• simplest regular expression is a literal string

• complex regular expressions use metacharacters to
describe various options in building a pattern.

(pipe) matches either the expression before or after it|

groups expressions(...)

matches any one of the class of characters in the brackets[...]

specifies a range of occurrences for the element preceding it{ ... }

matches the preceding element 0 or 1 times?

matches the preceding element 1 or more times+

matches the preceding element 0 or more times*

matches at the end of a string$

matches at the beginning of a string^

matches any single character except newline.

escapes the character immediately following it\

Basic
• The most basic match is:

– $string =~ m/sought_text/;
– Will return true if sought_text is part of string, false otherwise
– Perl assume m/???/ when use /???/

#!c:\perl\bin

$name = "shlomo hershkop";

if($name =~ /lom/){
print "have found match\n";

}
else{

print "no match found\n";
}

19

What about?

$name = "shlomo hershkop";

if($name =~ m/^her/){
print "have found match\n";

}
else{

print "no match found\n";
}

Basic II

• Will match case sensitive unless told not
to by matching operators

If($name =~ /shlomo/i){
something

}

20

Pattern attributes
• =˜ binds a scalar to a pattern match, substitution or translation

• !˜ just like above, except that the return value is negated in the logical sense

• operators:
– m/pattern/gimosx : match

• g = match globally (all instances)
• i = do case insensitive matching
• note that first m is optional

– s/pattern/replacement/egimosx : search
• e = evaluate right side as an expression
• g = match globally (all instances)
• i = do case insensitive matching

– y/pattern1/pattern2/cds : translate

• c = complement pattern1
• d = delete found but unreplaced characters
• s = squash duplicate replaced characters

Example
#!/usr/bin/perl
$s = "hello world";
print ’$s=[’,$s,"]\n";
if ($s =˜ m/x/)

{ print "there’s an x in ",$s,"\n" }
else

{ print "there isn’t\n" }

if ($s =˜ m/L/i)
{ print "there’s an l in ",$s,"\n" }

else
{ print "there isn’t\n" }

• output:
$s=[hello world]
there isn’t
there’s an l in hello world

21

Example 2
#!/usr/bin/perl
$s = "hello world";

print ’$s=[’,$s,"]\n";

$t = ($s =˜ s/l/x/g);

print ’$t=[’,$t,"]\n";
print ’$s=[’,$s,"]\n";

• output:
$s=[hello world]
$t=[3]
$s=[hexxo worxd]

Example 3
#!/usr/bin/perl
$s = "hello world";
print ’$s=[’,$s,"]\n";
$u = ($s =˜ y/l/o/c);
print ’$u=[’,$u,"]\n";
print ’$s=[’,$s,"]\n";

• output:
$s=[hello world]
$u=[8]
$s=[oollooooolo]

22

Next time

• Read up on regular expressions

