
1

CS3157: Advanced 
Programming

Lecture #13
Dec 5

Shlomo Hershkop
shlomo@cs.columbia.edu

Overview

• Last lecture
– Software engineering

• Will cover most in class, you are responsible for 
understanding high level overview

– PHP
• Will cover in class and next lab.

What is Software Engineering?
• Stephen Schach: “Software engineering is a discipline whose aim is 

the production of fault-free software, delivered on time and within 
budget, that satisfies the user’s needs.”

• includes:
– requirements analysis
– human factors
– functional specification
– software architecture
– design methods
– programming for reliability
– programming for maintainability
– team programming methods
– testing methods
– configuration management

Why 
• in school, you learn the mechanics of programming
• you are given the specifications
• you know that it is possible to write the specified 

program in the time allotted
• but not so in the real world...

– what if the specifications are not possible?
– what if the time frame is not realistic?
– what if you had to write a program that would last for 10 years?

• in the real world:
– software is usually late, over budget and broken
– software usually lasts longer than employees or hardware

• the real world is cruel and software is fundamentally 
brittle



2

Who 
• the average manager has no idea how software needs to 

be implemented

• the average customer says: “build me a system to do X”

• the average layperson thinks software can do anything 
(or nothing)

• most software ends up being used in very different ways 
than how it was designed to be used

Time 
• you never have enough time
• software is often under budgeted
• the marketing department always wants it 

tomorrow
• even though they don’t know how long it will take 

to write it and test it
• “Why can’t you add feature X? It seems so 

simple...”
• “I thought it would take a week...”
• “We’ve got to get it out next week. Hire 5 more 

programmers...”

People
• you can’t do everything yourself
• e.g., your assignment: “write an operating 

system”
• where do you start?
• what do you need to write?
• do you know how to write a device driver?
• do you know what a device driver is?
• should you integrate a browser into your 

operating system?
• how do you know if it’s working?

Complexity 
• software is complex!
• or it becomes that way

– feature bloat
– patching

• e.g., the evolution of Windows NT
– NT 3.1 had 6,000,000 lines of code
– NT 3.5 had 9,000,000
– NT 4.0 had 16,000,000
– Windows 2000 has 30-60 million
– Windows XP has at least 45 million...



3

Necessity 

• you will need these skills!

• risks of faulty software include
– loss of money
– loss of job
– loss of equipment
– loss of life

Therac-25
• http://sunnyday.mit.edu/papers/therac.pdf

• therac-25 was a linear accelerator released in 1982 for 
cancer treatment by releasing limited doses of radiation

• it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were 
hardward-controlled)

• it was controlled by a PDP-11; software controlled safety

• in case of error, software was designed to prevent 
harmful effects

• BUT
• in case of software error, cryptic codes were displayed to 

the operator, such as:
• “MALFUNCTION xx”
• Where 1 < xx < 64

• operators became insensitive to these cryptic codes
• they thought it was impossible to overdose a patient
• however, from 1985-1987, six patients received massive 

overdoses of radiation and several died

• main cause:
• a race condition often happened when operators entered 

data quickly, then hit the up-arrow key to correct the data 
and the values were not reset properly

• the manufacturing company never tested quick data 
entry— their testers weren’t that fast since they didn’t do 
data entry on a daily basis

• apparently the problem had existed on earlier models, 
but a hardware interlock mechanism prevented the 
software race condition from occurring

• in this version, they took out the hardware interlock 
mechanism because they trusted the software



4

Example2: Ariane 501
• next-generation launch vehicle, after ariane 4

• presigious project for ESA
• maiden flight: june 4, 1996
• inertial reference system (IRS), written in ada

– computed position, velocity, acceleration
– dual redundancy
– calibrated on launch pad
– relibration routine runs after launch (active but not used)

• one step in recalibration converted floating point value of horizontal velocity to integer

• ada automatically throws out of bounds exception if data conversion is out of bounds

• if exception isn’t handled... IRS returns diagnostic data instead of position, velocity, 
acceleration

• perfect launch

• ariane 501 flies much faster than ariane 4

• horizontal velocity component goes out of bounds

• IRS in both main and redundant systems go into diagnostic mode

• control system receives diagnotic data but interprets it as wierd
position data

• attempts to correct it...

• ka-boom!

• failure at altitiude of 2.5 miles

• 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid 
propellant

• expensive failure:
– ten years
– $7 billion

• horizontal velocity conversion was deliberately left unchecked

• who is to blame?

• “mistakes were made”

• software had never been tested with actual flight parameters

• problem was easily reproduced in simulation, after the fact

Mythical man-month
• Fred Brooks (1975)

• book written after his experiences in the OS/360 design

• major themes:
– Brooks’ Law: “Adding manpower to a late software project makes it 

later.”
– the “black hole” of large project design: getting stuck and getting out
– organizing large team projects and communication
– documentation!!!
– when to keep code; when to throw code away
– dealing with limited machine resources

• most are supplemented with practical experience



5

No silver bullet
• paper written in 1986 (Brooks)

• “There is no single development, in either technology or 
management technique, which by itself promises even one order-of 
magnitude improvement within a decade of productivity, in reliability, 
in simplicity.”

• why? software is inherently complex

• lots of people disagreed, but there is no proof of a counter-argument

• Brooks’ point: there is no revolution, but there is evolution when it 
comes to software development

SE Mechanics

• well-established techniques and 
methodologies:
– team structures
– software lifecycle / waterfall model
– cost and complexity planning / estimation
– reusability, portability, interoperability, 

scalability
– UML, design patterns

Team Structures
• why Brooks’ Law?

– training time
– increased communications: pairs grow by

 
• while people/work grows by

– how to divide software? this is not task sharing

• types of teams
– democratic
– “chief programmer”
– synchronize-and-stabilize teams
– eXtreme Programming teams

Lifecycles 
• software is not a build-one-and-throw-away process

• that’s far too expensive

• so software has a lifecycle

• we need to implement a process so that software is 
maintained correctly

• examples:
– build-and-fix
– waterfall



6

Software lifestyle cycle
• 7 basic phases (Schach):

– requirements (2%)
– specification/analysis (5%)
– design (6%)
– implementation (module coding and testing) (12%)
– integration (8%)
– maintenance (67%)
– retirement

• percentages in ()’s are average cost of each task during 1976-1981
• testing and documention should occur throughout each phase
• note which is the most expensive!

Requirements
• what are we doing, and why?

• need to determine what the client needs, not what the client wants 
or thinks they need

• worse— requirements are a moving target!

• common ways of building requirements include:
– prototyping
– natural- �language requirements document

• use interviews to get information (not easy!)

• example: your online store

Specifications
• the “contract”— frequently a legal document

• what the product will do, not how to do it

• should NOT be:
– ambiguous, e.g., “optimal”
– incomplete, e.g., omitting modules
– contradictory

• detailed, to allow cost and duration estimation

• classical vs object-oriented (OO) specification
– classical: flow chart, data-flow diagram
– object-oriented: UML

• example: your online store

Design Phase
• the “how” of the project

• fills in the underlying aspects of the specification

• design decisions last a long time!

• even after the finished product
– maintenance documentation
– try to leave it open-ended

• architectural design: decompose project into modules

• detailed design: each module (data structures, algorithms)

• UML can also be useful for design

• example: your online store



7

Implementation
• implement the design in programming language(s)

• observe standardized programming mechanisms

• testing: code review, unit testing

• documentation: commented code, test cases

• integration considerations
– combine modules and check the whole product
– top-down vs bottom-up ?
– testing: product and acceptance testing; code review
– documentation: commented code, test cases
– done continually with implementation (can’t wait until the last minute!)

• example: your online store

Maintenance Phase
• defined by Schach as any change
• by far the most expensive phase
• poor (or lost) documentation often makes the situation even worse
• programmers hate it

• several types:
– corrective (bugs)
– perfective (additions to improve)
– adaptive (system or other underlying changes)

• testing maintenance: regression testing (will it still work now that I’ve fixed 
it?)

• documentation: record all the changes made and why, as well as new test 
cases

• example: your on-line store— how might the system change once it’s been 
implemented?

Retirement phase

• the last phase, of course

• why retire?
– changes too drastic (e.g., redesign)
– too many dependencies (“house of cards”)
– no documentation
– hardware obsolete

• true retirement rate: product no longer useful

Planning and Estimation

• we still need to deal with the bottom line
– how much will it cost?
– can you stick to your estimate?
– how long will it take?
– can you stick to your estimate?

• how do you measure the product (size, 
complexity)?



8

Reusability 
• impediments:

– lack of trust
– logistics of reuse
– loss of knowledge base
– mismatch of features

• how to:
– libraries
– APIs
– system calls
– objects (OOP)
– frameworks (a generic body into which you add your particular 

code)

Portability
• Java and C#

• Java: uses a JVM
– write once, run anywhere (sorta, kinda)

• C#: also uses a JVM
– emphasizes mobile data rather than code

• winner?
– betting against Microsoft is historically a losing 

proposition...

interoperability

• e.g., CORBA

• define abstract services

• allow programs in any language to access 
services in any language in any location

• object-ish

Scalability 

• something to keep in mind

• don’t worry about scaling beyond the abilities of 
the machine

• avoid unnecessary barriers

• from single connection to forking processes to 
threads...



9

PHP History
• developed in the latter 1990’s
• originally created as “Personal Home Page” tools, by Rasmus Lerdorf
• at first, was a quick tool for embedding sql queries in a web page (v1.0)
• then structured code was added (v2.0), but with a buggy language parser
• official release (v3.0) fixed parser bugs - June 1998
• by Jan 1999, 100,000 web pages were using php!!!
• php is better than cgi because:

– it runs as part of the web server process and doesn’t require forking (unlike cgi)
– it runs faster than cgi
– it’s faster to write...

• php was designed to run with apache web server on unix
– but also runs on windows and mac

• it’s free!

• php is coded in C
– has a well-defined API
– extensible

• the way it runs:
– a php engine is installed as part of a web 

server
– the engine runs the php script and produces 

html, which gets passed back to the browser

• hello.php (plain php)

• hello2.php (php embedded in html)

• hello3.php (uses <?php start tag)



10

Hello.php

<?
print "hello world!";
?>

Hello2.php

<html>
<body bgcolor=#000000 text=#ffffff>
<?
print "hello world!";
?>
</body>
</html>

Hello3.php

<html>
<body bgcolor=#000000 text=#ffffff>
<?php
print "hello world!";
?>
</body>
</html>

basics
• php start and end tags: <? ... ?>
• also: <?php ... ?>
• semi-colon ends a statement (like C)
• string constants surrounded by quotes (") or (’)
• you can embed multiple php blocks in a single html file
• variable names are preceded by dollar sign ($)
• user input is through html forms
• the language is case-sensitive, but calls to built-in functions are not 

(not sure if that’s true for all built-in functions)

• identifiers are made of letters, numbers and underscore (_); and
cannot begin with a number

• expressions are just like in C



11

Data types
• integers
• floating-point numbers
• strings
• loosely typed (you don’t have to declare a 

variable before you use it)
• conversion functions: intval, doubleval, strval, 

settype
• settype( <value>, <newtype> ) where 

newtype="integer", "double" or "string"
• typecasting: (integer), (string), (double), (array), 

(object)

operators

• mathematical: +, -, *, /, %, ++, --
• relational: <, >, <=, >=, ==, !=
• logical: AND, &&, OR, ||, XOR, !
• bitwise: &, |, ˆ (xor), ˜ (ones complement), >>, <<
• assignment: =, =, -=, *=, /=,
• other:

– .  concatenate
– ->   references a class method or property
– => initialize array element index

Conditionals 
• if/elseif/else:
if ( <expression1> ) {
<statement(s)>
}
elseif ( <expression2> ) {
<statement(s)>
}
else {
<statement(s)>
}

Conditional II
• tertiary operator:
<conditional-expression> ?
<true-expression> : <false-expression>;

• switch:
switch( <root-expression> ) {
case <case-expression>:
<statement(s)>;
break;
default:
<statement(s)>;
break;
}



12

loops
• while
while ( <expression> ) {
<statement(s)>;
}
• do-while
do {
<statement(s)>;
} while ( <expression> );
• for
for ( <initialize> ; <continue> ; <increment> ) {
<statement(s)>;
}
• break:

– execution jumps outside innermost loop or switch

other

• exit() function
– halts execution, meaning that no more code 

(php or html) is sent to the browser
• built-in constants

– PHP_VERSION
– __FILE__, __LINE__
– TRUE = 1, FALSE = 0
– M_PI = pi (3.1415927....)

Writing your own functions
• declared just like C:
function <name> ( args ) {
<body>
[return <value>]
}
• called just like C
• arguments (and local variables) are local, and don’t exist when you 

exit the function; but you can use “static” to declare a variable so 
that when you call a function again, the value is retained

• use the “global” statement to declare global variables that you want 
to be able to access from within a function, or the GLOBALS array 
(which is like a perl hash)
e.g., GLOBALS[’username’]

• recursion is okay, but be careful!

code
<?
$today = date("l F d, Y");
$yourname = $_POST['yourname'];
$cost     = doubleval( $_POST['cost'] );
$numdays = intval( $_POST['numdays'] );
?>

<html>
<body>
today is:

<?
PRINT( "$today<br>" );
priNT( "$yourname, you will be out \$" );
print( doubleval( $cost * $numdays ));
print( " for buying lunch this week!" );
?>
</body>
</html>



13

arrays
• indexed using [...]
• indeces can be integers or strings (like a perl hash)
• when strings are indeces, it’s called an “associative 

array”
• array() function can be used to initialize an array
• e.g., $var = array( value0, value1, value2, ... );
• use the => operator to define the index:
$var = array( 1=>value1, value2, ... );
$var = array( "a"=>value1, "b"=>value2, ... 
);

• multidimensional arrays are okay (like C)

code
<html>
<body bgcolor=#ffffff>
<?
$states = array( "CA","NY" );
print "here are the states:<br>";
for ( $i=0; $i<count( $states ); $i++ ) {
print "-- $states[$i]<br>";

}
print "<p>";
$cities = array( "CA"=>array( "san francisco","los angeles" ),

"NY"=>array( "new york","albany","buffalo" ));
print "here are the CA cities:<br>";
for ( $i=0; $i<count( $cities["CA"] ); $i++ ) {
print( "-- ".$cities["CA"][$i]."<br>" );

}
print "here are the NY cities:<br>";
for ( $i=0; $i<count( $cities["NY"] ); $i++ ) {
print( "-- ".$cities["NY"][$i]."<br>" );

}

Code II
print "<p>";
$states[] = "MA";
print "now here are the states:<br>";
for ( $i=0; $i<count( $states ); $i++ ) {
print "-- $states[$i]<br>";

}
$cities[] = "MA";
$cities["MA"][] = "boston";
print "here are the MA cities:<br>";
for ( $i=0; $i<count( $cities["MA"] ); $i++ ) {
print( "-- ".$cities["MA"][$i]."<br>" );

}

?>
</body>
</html>

classes
• defining a class:
class <class-name> {
// declare properties
// declare methods
}

• use just like java and c++
• example: myclass.php and userclass.php
• note use of include statement



14

myclass.php
<html>
<body>
<?

include "userclass.php";

$currentuser = new user;
$currentuser->init( "yaddi","cat" );

print( "name = ".$currentuser->name."<br>" );
print( "last login = ".$currentuser->getLastLogin() );

?>
</body>
</html>

userclass.php
<?
class user {

// properties
var $name;
var $password;
var $last_login;

// methods
function init( $inputname, $inputpassword ) {
$this->name = $inputname;
$this->password = $inputpassword;
$this->last_login = time();

}

function getLastLogin() {
return( date( "M d Y", $this->last_login ));

}

}

I/O
• get input from html forms using
$_POST[’<name>’]
$_GET[’<name>’]
$_REQUEST[’<name>’]
• file I/O

– basically just like C:
$fp = fopen( "filename","w" );
fwrite( $fp,"stuff" );
fclose( $fp );

– note that fopen second argument mode is like C)

Closing Remarks

• Will still meet last lab this week
• Hope you enjoyed the whirlwind tour of 

different types of programming languages 
and projects

• Hope you had fun
• If you like this…..just the beginning
• If you didn’t ….. You now know how 

complicated it is….never trust a program 
☺



15

Next step

• More Computer science courses
– theory and practice

• If anyone is interested in doing research 
over winter break, spring semester, over 
the summer, please contact me once you 
are done with finals.

• Thank You!


