CS3157: Advanced
Programming

Lecture #13
Dec 5

Shlomo Hershkop
shlomo@cs.columbia.edu

Overview

 Last lecture

— Software engineering

» Will cover most in class, you are responsible for
understanding high level overview

—PHP
« Will cover in class and next lab.

What is Software Engineering?

Stephen Schach: “Software engineering is a discipline whose aim is
the production of fault-free software, delivered on time and within
budget, that satisfies the user’s needs.”

includes:

— requirements analysis

— human factors

— functional specification

— software architecture

— design methods

— programming for reliability

— programming for maintainability

— team programming methods

— testing methods

— configuration management

Why

in school, you learn the mechanics of programming
you are given the specifications
you know that it is possible to write the specified
program in the time allotted
but not so in the real world...

— what if the specifications are not possible?

— what if the time frame is not realistic?

— what if you had to write a program that would last for 10 years?
in the real world:

— software is usually late, over budget and broken

— software usually lasts longer than employees or hardware
tt?_e Ireal world is cruel and software is fundamentally

rittle

Who

the average manager has no idea how software needs to
be implemented

the average customer says: “build me a system to do X"

the average layperson thinks software can do anything
(or nothing)

most software ends up being used in very different ways
than how it was designed to be used

Time

you never have enough time
software is often under budgeted

the marketing department always wants it
tomorrow

even though they don’t know how long it will take
to write it and test it

“Why can't you add feature X? It seems so
simple...”

“I thought it would take a week...”

“We've got to get it out next week. Hire 5 more
programmers...”

People

you can't do everything yourself

e.g., your assignment: “write an operating
system”

where do you start?

what do you need to write?

do you know how to write a device driver?
do you know what a device driver is?
should you integrate a browser into your
operating system?

how do you know if it's working?

Complexity

 software is complex!
* or it becomes that way

— feature bloat
— patching

* e.g., the evolution of Windows NT

— NT 3.1 had 6,000,000 lines of code
— NT 3.5 had 9,000,000

— NT 4.0 had 16,000,000

— Windows 2000 has 30-60 million

— Windows XP has at least 45 million...

Necessity

« you will need these skills!

« risks of faulty software include
—loss of money

Therac-25

http://sunnyday.mit.edu/papers/therac.pdf

therac-25 was a linear accelerator released in 1982 for
cancer treatment by releasing limited doses of radiation

it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were

—loss of job hardward-controlled)
-1 f ipmen .
0SS0 ?qu pment it was controlled by a PDP-11; software controlled safety
— loss of life
in case of error, software was designed to prevent
harmful effects
main cause:
a race condition often happened when operators entered
data quickly, then hit the up-arrow key to correct the data
BUT and the values were not reset properly

« in case of software error, cryptic codes were displayed to
the operator, such as:

e “MALFUNCTION xx”
¢ Where 1 < xx <64

« operators became insensitive to these cryptic codes
« they thought it was impossible to overdose a patient

« however, from 1985-1987, six patients received massive
overdoses of radiation and several died

the manufacturing company never tested quick data
entry— their testers weren't that fast since they didn’t do
data entry on a daily basis

apparently the problem had existed on earlier models,
but a hardware interlock mechanism prevented the
software race condition from occurring

in this version, they took out the hardware interlock
mechanism because they trusted the software

Example2: Ariane 501

next-generation launch vehicle, after ariane 4

presigious project for ESA
maiden flight: june 4, 1996
inertial reference system (IRS), written in ada
— computed position, velocity, acceleration
— dual redundancy
— calibrated on launch pad
— relibration routine runs after launch (active but not used)

one step in recalibration converted floating point value of horizontal velocity to integer
ada automatically throws out of bounds exception if data conversion is out of bounds

if exception isn't handled... IRS returns diagnostic data instead of position, velocity,
acceleration

perfect launch

ariane 501 flies much faster than ariane 4

horizontal velocity component goes out of bounds

IRS in both main and redundant systems go into diagnostic mode

control system receives diagnotic data but interprets it as wierd
position data

attempts to correct it...
ka-boom!
failure at altitiude of 2.5 miles

25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid
propellant

expensive failure:
— tenyears
— $7 billion

horizontal velocity conversion was deliberately left unchecked
who is to blame?

“mistakes were made”

software had never been tested with actual flight parameters

problem was easily reproduced in simulation, after the fact

Mythical man-month

Fred Brooks (1975)
book written after his experiences in the 0S/360 design

major themes:

— Brooks’ Law: “Adding manpower to a late software project makes it
later.”

— the “black hole” of large project design: getting stuck and getting out
— organizing large team projects and communication

— documentation!!!

— when to keep code; when to throw code away

— dealing with limited machine resources

most are supplemented with practical experience

No silver bullet

* paper written in 1986 (Brooks)

* “There is no single development, in either technology or

management technique, which by itself promises even one order-of
magnitude improvement within a decade of productivity, in reliability,

in simplicity.”

* why? software is inherently complex

« lots of people disagreed, but there is no proof of a counter-argument

« Brooks’ point: there is no revolution, but there is evolution when it
comes to software development

SE Mechanics

well-established techniques and
methodologies:

— team structures

— software lifecycle / waterfall model

— cost and complexity planning / estimation

— reusability, portability, interoperability,
scalability

— UML, design patterns

Team Structures

« why Brooks’ Law?
— training time
— increased communications: pairs grow by

* while people/work grows by
— how to divide software? this is not task sharing

* types of teams
— democratic
— “chief programmer”
— synchronize-and-stabilize teams
— eXtreme Programming teams

Lifecycles

software is not a build-one-and-throw-away process
that’s far too expensive
so software has a lifecycle

we need to implement a process so that software is
maintained correctly

examples:
— build-and-fix
— waterfall

Software lifestyle cycle

7 basic phases (Schach):
— requirements (2%)

— specification/analysis (5%)

— design (6%)

— implementation (module coding and testing) (12%)
— integration (8%)

— maintenance (67%)

— retirement

percentages in ()'s are average cost of each task during 1976-1981
testing and documention should occur throughout each phase
note which is the most expensive!

Requirements

what are we doing, and why?

need to determine what the client needs, not what the client wants
or thinks they need

worse— requirements are a moving target!
common ways of building requirements include:
— prototyping
— natural-language requirements documentl

use interviews to get information (not easy!)

example: your online store

Specifications

the “contract"— frequently a legal document
what the product will do, not how to do it
should NOT be:

— ambiguous, e.g., “optimal”

— incomplete, e.g., omitting modules

— contradictory
detailed, to allow cost and duration estimation
classical vs object-oriented (OO) specification

— classical: flow chart, data-flow diagram

— object-oriented: UML

example: your online store

Design Phase

the “how” of the project
fills in the underlying aspects of the specification
design decisions last a long time!

even after the finished product
— maintenance documentation
— tryto leave it open-ended

architectural design: decompose project into modules
detailed design: each module (data structures, algorithms)
UML can also be useful for design

example: your online store

Implementation

« implement the design in programming language(s)
« observe standardized programming mechanisms
« testing: code review, unit testing
+ documentation: commented code, test cases
« integration considerations

— combine modules and check the whole product

— top-down vs bottom-up ?

— testing: product and acceptance testing; code review
— documentation: commented code, test cases

done continually with implementation (can't wait until the last minute!)

« example: your online store

Maintenance Phase

defined by Schach as any change

by far the most expensive phase

poor (or lost) documentation often makes the situation even worse
programmers hate it

several types:
— corrective (bugs)
— perfective (additions to improve)
— adaptive (system or other underlying changes)

testing maintenance: regression testing (will it still work now that I've fixed
it?)

documentation: record all the changes made and why, as well as new test
cases

example: your on-line store— how might the system change once it's been
implemented?

Retirement phase

« the last phase, of course

* why retire?
— changes too drastic (e.g., redesign)
— too many dependencies (“house of cards”)
— no documentation
— hardware obsolete

« true retirement rate: product no longer useful

Planning and Estimation

» we still need to deal with the bottom line

— how much will it cost?

— can you stick to your estimate?
—how long will it take?

— can you stick to your estimate?

how do you measure the product (size,
complexity)?

Reusability

* impediments:
— lack of trust
— logistics of reuse
— loss of knowledge base
— mismatch of features

* how to:
— libraries
— APIs
— system calls
objects (OOP)
frameworks (a generic body into which you add your particular
code)

Portability
Java and C#

Java: uses a JVM
— write once, run anywhere (sorta, kinda)

C#: also uses a JVM
— emphasizes mobile data rather than code

winner?
— betting against Microsoft is historically a losing
proposition...

interoperability

e e.g.,, CORBA
« define abstract services

« allow programs in any language to access
services in any language in any location

« object-ish

Scalability

something to keep in mind

don’t worry about scaling beyond the abilities of
the machine

avoid unnecessary barriers

from single connection to forking processes to
threads...

PHP History

« developed in the latter 1990's
« originally created as “Personal Home Page” tools, by Rasmus Lerdorf
« atfirst, was a quick tool for embedding sql queries in a web page (v1.0)
« then structured code was added (v2.0), but with a buggy language parser
« official release (v3.0) fixed parser bugs - June 1998
« by Jan 1999, 100,000 web pages were using php!!!
« php is better than cgi because:
— itruns as part of the web server process and doesn't require forking (unlike cgi)
— it runs faster than cgi
— it's faster to write...

« php was designed to run with apache web server on unix
— but also runs on windows and mac

« it's free!
 phpis coded in C * hello.php (plain php)
— has a well-defined API
— extensible

« hello2.php (php embedded in html)

« the way it runs:
—aphp engine is installed as part of a web * hello3.php (uses <?php start tag)
server
—the engine runs the php script and produces
html, which gets passed back to the browser

Hello.php

Hello2.php

<? <html>
print "hello world!"; <body bgcolor=#000000 text=#ffffff>
?> <?
print "hello world!";
>
</body>
</html>
Hello3.php basics
« php start and end tags: <? ... 7>
<html> « also: <?php ... 7>
— —#ffff « semi-colon ends a statement (like C)
<b0dy bgcolor—#OOOOOO text= ff> « string constants surrounded by quotes (*) or (')
<f)php « you can embed multiple php blocks in a single html file
) « variable names are preceded by dollar sign ($)
print "hello world!": « user input is through html forms
e « the language is case-sensitive, but calls to built-in functions are not
> (not sure if that's true for all built-in functions)
« identifi de of letters, by d und ;and
</b0dy> Ic:nnnloltekgseéiirne\mt?\ :r?unsbgrrs numbers and underscore (_); an
</html>

expressions are just like in C

10

Data types

* integers

« floating-point numbers

* strings

« loosely typed (you don’t have to declare a
variable before you use it)

« conversion functions: intval, doubleval, strval,
settype

« settype(<value>, <newtype>) where
newtype="integer", "double" or "string"

* typecasting: (integer), (string), (double), (array),
(object)

operators

« mathematical: +, -, *, /, %, ++, --

« relational: <, >, <=, >=, ==, I=

* logical: AND, &&, OR, ||, XOR, !

* bitwise: &, |, ~ (xor), ~ (ones complement), >>, <<

e assignment: =, =, -=, *=, /=,

* other:
—-. concatenate
- > references a class method or property
—-=> initialize array element index

Conditionals

« iflelseif/else:
if (<expressionl>) {
<statement(s)>

elseif (<expression2>) {
<statement(s)>

}

else {

<statement(s)>

}

Conditional 1l

« tertiary operator:
<conditional-expression> ?
<true-expression> : <false-expression>;

* switch:

switch(<root-expression>) {
case <case-expression>:
<statement(s)>;

break;

default:

<statement(s)>;

break;

}

11

loops

* while
while (<expression>) {
<statement(s)>;

* do-while
do {
<statement(s)>;
} while (<expression>);
o for
for (<initialize> ; <continue> ; <increment>) {
<statement(s)>;
}
* break:
— execution jumps outside innermost loop or switch

other

« exit() function

— halts execution, meaning that no more code
(php or html) is sent to the browser

* built-in constants
— PHP_VERSION
— _FILE__, LINE__
—TRUE=1,FALSE=0
—M_PI = pi (3.1415927....)

Writing your own functions

« declared just like C:

function <name> (args) {

<body>

[return <value>]

3

« called just like C

+ arguments (and local variables) are local, and don't exist when you
exit the function; but you can use “static” to declare a variable so
that when you call a function again, the value is retained

« use the “global” statement to declare global variables that you want
to be able to access from within a function, or the GLOBALS array
(which is like a perl hash)
e.g., GLOBALS['username’]

* recursion is okay, but be careful!

code

<2
Stoday = date('l F d, Y");

$yourname = $_POST['yourname];

$cost = doubleval($_POST[cost]);
$numdays = intval($_POST[numdays’]);
el

<html>
<body>
today is:

<2

PRINT(“$today
");

priNT("$yourname, you will be out \$");
print(doubleval($cost * $numdays));
print(" for buying lunch this week!");
el

<lbody>

</html>

12

arrays

* indexed using [...]
« indeces can be integers or strings (like a perl hash)

« when strings are indeces, it's called an “associative
array”

« array() function can be used to initialize an array

e e.g., $var = array(value0, valuel, value2, ...);

¢ use the => operator to define the index:

$var = array(1=>valuel, value2, ...);
$var = array("a"=>valuel, "b"=>value2, ...

* multidimensional arrays are okay (like C)

code

<htmi>
<body bgcolor=#FFFfff>
<2

$states = array("CA","NY");

print "here are the states:
";

for (; $i<count($states); S$i++) {
print "-- $states[$i]
";

print "<p>";
$cities = array("CA"=>array("san francisco","los angeles"),
“Ny"=>array("new york","albany","buffalo”));
print “here are the CA cities:
";
for ($i=0; $i<count(Scities["CA"]); $i++) {
print("-- ".$cities["CA"][$i]."
");

ere are the NY citi br>";
3 $i<count($cit NY"]): $iH) {
print("-- ".$cities["NY"][$i]."
");

Code Il

print "<p>";

$states[] = "MA";

print "now here are the states:
";

for ($i=0; $i<count($states); $i++) {
print "-- $states[$i]
";

3

$cities[] = "MA";

$cities["MA™][] = "boston";

print "here are the MA cities:
";

for ($i=0; $i<count($cities["MA"]); $i++) {
print("-- ".$cities["MA"][$i]."
");

3

2>

</body>
</html>

classes

« defining a class:

class <class-name> {
// declare properties
// declare methods

}

* use just like java and c++
» example: myclass.php and userclass.php
* note use of include statement

13

myclass.php

<html>
<body>
<?

include "userclass.php”;

$currentuser = new user;
$currentuser->init("yaddi”,"cat");

print("name = ".$currentuser->name."
");

print("last login = ".$currentuser->getLastlLogin());
2>

</body>

</html>

<2

userclass.php

class user {

// properties
var $name;

var $password;
var $last_login;

// methods
function init($inputname, $inputpassword) {

$this->name = $inputname;
$this->password = $inputpassword;
$this->last_login = time();

3

function getLastLogin() {

return(date("M d Y", $this->last_login));

1/O

¢ get input from html forms using
$ _POST[”<name>"]
$ GET[<name>"]
$_REQUEST[”<name>"]
« file I/O
— basically just like C:
$fp = fopen("filename™,"w");
fwrite($fp,""stuff”);
fclose($fp);
— note that fopen second argument mode is like C)

Closing Remarks

Will still meet last lab this week

Hope you enjoyed the whirlwind tour of
different types of programming languages
and projects

Hope you had fun

If you like this.....just the beginning

If you didn't You now know how

complicated it is....never trust a program
©

14

Next step

« More Computer science courses
—theory and practice

« If anyone is interested in doing research
over winter break, spring semester, over
the summer, please contact me once you
are done with finals.

* Thank You!

15

