CS3157: Advanced
Programming

Lecture #12
Nov 28

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

« Update on webthumb
¢ Shell commands
« Time permitting:
— dynamic memory allocation (new/delete vs malloc/free)
container classes
— lterator classes
— Templates
— polymorphism

¢ Reading
— c++core ch 7-9,11-13

Announcements

Final: 12/21 (wed) 1-4pm in class.
— Will post details on web

— Will hold a review session prior

— Will post online sample questions

webthumb

e Issues

— Most issues were related because people didn't really
understand what they were using.
— ldeas!
* Problems
— Local server
— Ports
— Memory frame buffers
— Half screens
— Systems

» Explanations

Schedule:

Will now break from cpp, and cover unix
utilities

Might have time for some software
engineering background

Will cover php next week

Last lab will also be final hw

— Combine everything we've learned so far into
small project using anything you want.

Useful tools & commands

wc — counts characters, words and lines in input
grep — matches regular expression patterns in
input

cut — extracts portions of each line from input
sort — sorts lines of input

sed — stream edits input

ps — displays process list of running processes
who — displays anyone logged in on the system

wcC

unix command: counts the number of characters/words/lines in its input
input can be a file or a piped command (see below)

example:

filename = “hello.dat”

hello
world

usage:

unix-prompt$ wc hello.dat

2 2 12 hello.dat
unix-prompt$ wc -1 hello.dat
2 hello.dat

unix-prompt$ wc -c hello.dat
12 hello.dat

unix-prompt$ wc -w hello.dat
2 hello.dat

grep

Global Regular Expression Parser
one of the most useful tools in unix
three standard versions:
— plain old grep
— extended grep: egrep
— fast grep: fgrep
used to search through files for ... regular expressions!
prints only lines that match given pattern

a kind of filter

BUT it's line oriented

 input can be one or more files or can be piped into grep

* examples:
grep ""[aeiou]"” myfile
Is -1] grep t

 useful options:

¢ -iignore case

¢ -w match pattern as a word

e -l return only the filename if there’s a match

« -vreverse the normal action (i.e., return what doesn’t
match)

examples:

grep -i ""[aeiou]” myfile
grep -v ""[aeiou]” myfile
grep -iv ""[aeiou]” myfile

how do you list all lines containing a digit?
how do you list all lines containing a 5?
how do you list all lines containing a 0?
how do you list all lines containing 50?

how do you list all lines containing a 5 and an 0?

cut

¢ unix command: extracts portions of each
line from input

« input can be a file or a piped command
e syntax: cut <-c|f> <-d>

* note that ¢ and +f+ start with 1; default
delimiter is TAB

sort
unix command: sorts lines of input

input can be a file or a piped command (see
below)

three modes: sort, check (sort -c), merge (sort -
m)

syntax: sort <-t> <-n> <-r> <-0> POS1 -POS2+
note that POS starts with 0; default delimiter is
whitespace

sed

* stream editor
« does not change the file it “edits”

« commands are implicitly global
« input can be a file or can be piped into sed

« example: substitute all A for B:
* sed 's/A/B/’ myfile
« cat myfile | sed 's/A/B/’

« use the -e option to specify more than one command at a time:
* sed -e 's/A/B/' -e 's/C/D/' myfile

« pipe output to a file in order to save it:
* sed -e 's/A/B/' -e 's/C/D/' myfile >mynewfile

sed

sed can specify an address of the line(s) to affect

if no address is specified, then all lines are affected

if there is one address, then any line matching the address is affected

if there are two (comma separated) addresses, then all lines between the
two addresses

« are affected

« if an exclamation mark (!) follows the address, then all lines that DON'T
match the

« address are affected
« addresses are used in conjunction with commands

« examples (using the delete (d) command):
sed *$d” myfile

sed */7$/d” myfile

sed *1,/under/d” myfile

sed “/over/,/under/d” myfile

« order of commands is important
 inputis line oriented

« all editing commands are applied to each line, one at a
time

« then next line is read and editing commands are applied
to that linei

e etc

« for example:

sed -e ’s/pig/cow/’ -e “s/cow/horse’ myfile
» what does this do?

* is this right???

« delimiter is slash (/)

» backslash (escape) it if it appears in the
command, e.g.:

sed *s/\/usr\/bin\//\/usr\/etc/’
myfile

¢ meta-character ampersand (&) represents the
extent of the pattern matched

e example:

sed ’s/[0-9]/#&/° myfile

¢ what does this do?

« you can also save portions of the matched
pattern:

sed *s/\([0-91\)/#\1/" myFile

sed *s/\A([0-91\)\([0-91\)/#\1-\2/" myFile

« transformation command: y
» example:
sed *y/ABC/abc” myfFile

e print command: p

* example:
sed ’/begin/,/end/p’> myfile
sed -n ”/begin/,/end/p’ myfile

» what do the following sed commands do?
sed ’s/xx/yy’ myfile

sed ’/BSD/d” myfile

sed */7BEGIN/,/"END/p@~ myfFile

» how do you change the content of all your html
files to lowercase?

* how do you change all the html commands to
lowercase?

shell

« shisthe “Bourne shell”, the first scripting language

« itis a program that interprets your command lines and runs other
programs
« it can invoke Unix commands and also has its own set of commands

while (1) {

print prompt and wait for user to enter input;
read input from terminal;

parse into words;

substitute variables;

execute commands (execv or builtin);

b

 shell commands can be read:
— from a terminal == interactive
— from a file == shell script

 search path
— the place where the shell looks for the commands it
runs
— should include standard directories:
« /bin
« [usr/bin
« it should also include your current working directory ()

e are you running the Bourne shell?
type:

$SHELL

« if the answer is /bin/sh, then you are

« if the answer is /bin/bash, then that’s close
enough

¢ otherwise, you can start the Bourne shell by
typing sh at the UNIX prompt

« enter Ctrl-D or exit to exit the Bourne shell and
go back to whatever shell you

* were running before...

« capable of both synchronous and asynchronous
execution
— synchronous: wait for completion
— asychronous: in parallel with shell (runs in the background)

« allows control of stdin, stdout, stderr

« enables environment setting for processes (using
inheritance between processes)

« sets default directory

« creating your own shell scripts

* naming:
— DON'T ever name your script (or any executable file) “test”
— since that's a sh command

* executing
— the notation #! inside your file tells UNIX which shell should execute the commands in your
file

« example— create a file called “myscript.sh”
#l/bin/sh
echo hello world

* make the script executable: unix-prompt# chmod +x myscript.sh
« execute the script:

./myscript.sh

myscript.sh

« quote (')
'something’: preserve everything literally and don't evaluate
anything that is inside the quotes

« double quote (")

"something2": preserve most things literally, but also allow
$ variable expansion (but not ' evaluation)

« backquote ()
‘something3': try to execute something as a command

filename=t.sh
#1/bin/sh
hello="hi"

echo 0=shello
echo 1="ghello”
echo 2="ghello™
echo 3=“ghello*
echo 4="“$hello“"
echo 5=""$hello™"

= filename=hi
= #1/bin/sh
< echo "how did you get in here?"

output=

unix$ t.sh

0=hi

1=$hello

2=hi

3=how did you get in here?
4=how did you get in here?
5="hi"

shell comments

« single line comments only (no multi-line
comments)

« line begins with # character

Simple commands

sequence of words

first word defines command
can be combined with &&, ||, ;
— to execute commands sequentially:

pipes

sequence of commands
connected with |

cmdl; cmd2; .
~ 10 execute a command i the background : » each command reads previous command’s
cm . A
— to execute two commands asynchronously: OUtpUt and takes it as Input
cmd2&
— to execute cmd2 if cmd1 has zero exit status:
cmd1 && cmd2 . examp|e:
— to execute cmd2 only if cmd1 has non-zero exit status:
u M
cmdt || cmd2 echo "hello world" | wec -w
« set exit status using exit command (e.g., exit 0 or exit 1) 2
 variables are placeholders for values S ypaenamesush
- 2 1/bin/sh
« shell does variable substitution echo 0%
« $var or ${var} is the value of the variable acho 2-82
* assignment: echo 3%
— var=value (with no spaces before or after!)
", — " ity
— let"var = value st

— export var=value

BUT values go away when shell is done executing
uninitialized variables have no value
variables are untyped, interpreted based on context
standard shell variables:

— ${N} = shell Nth parameter

— $$ = process ID

— $? = exit status

0=.//u.sh

3221003
4=0

unix$ u.sh abc 23

« shell variables are generally not visible to programs

« environment variables are a list of name/value pairs
passed to sub-processes

« all environment variables are also shell variables, but not
vice versa

« show with env or echo $var

« standard environment variables include:
— HOME = home directory
— PATH = list of directories to search
— TERM = type of terminal (vt100, ...)
— TZ =timezone (e.g., US/Eastern)

Loops

similar to C/Java constructs, but with commands

until test-commands; do consequent-commands;
done

while test-commands; do consequent-
commands; done

« for name [in words ...]; do commands; done

* also on separate lines
» break and continue control loop

« while

i=0

while [$i -1t 10]; do

echo "i=$i"

((i=$i+1)) # same as let "i=$i+1"
done

o for

for counter in “Is *.c“; do
echo $counter

done

if test-commands; then
consequent-commands;

[elif more-test-commands; then
more-consequents;]

[else alternate-consequents;]

fi

« colon (:) is a null command

« example

#1/bin/sh

if expr $TERM = "xterm"; then
echo "hello xterm";

else

echo "'something else™;

fi

case test-var in

valuel) consequent-commands;;
value2) consequent-commands;;
*) default-commands;

esac

« pattern matching:

— ?) matches a string with exactly one character

— ?*) matches a string with one or more characters

- [yY]llyY][eE][sS]) matches y, Y, yes, YES, yES...

— [*/[0-9]) matches filename with wildcards like /xxx/yyy/zzz3
— notice two semi-colons at the end of each clause

— stops after first match with a value

— you don't need double quotes to match string values!

example

#1/bin/sh
case ""$TERM" in

xterm) echo "hello xterm";
vt100) echo "hello vt100";

*) echo '"'something else";
esac

« biggest difference from traditional programming
languages

« shell substitutes and executes

« order:
— brace expansion
— tilde expansion
— parameter and variable expansion
— command substitution
— arithmetic expansion
— word splitting
— filename expansion

Command subing

replace $(command) or ‘command" by stdout of executing command
can be used to execute content of variables:
unixs x=1s

unix$ echo $x
Is
unix$ echo “Is*

unix$ echo “x*

sh: x: command not found
unix$ echo “$x*
myfile.c

a.out
unixs echo $(Is)
myfile.c
a.out

unixs echo $(x)

sh: x: command not found
unixs echo $($x)
myfile.c

a.out

10

Filename expansion

any word containing *2([is considered a pattern
* matches any string
2 matches any single character
[..] matches any of the enclosed characters
unix
nyfile.c
a.out
a.b
unixs Is a*
a.out
a.b
unixs Is a?
Is: No match.
unixs Is a.*
a.out
a.b
unixs Is a.?
a.b

unix$ Is a.???
a.out

unix$ Is [am].b
a.b

redirection

stdin, stdout and stderr may be redirected
< redirects stdin (0) to come from a file

> redirects stdout (1) to go to file

>> appends stdout to the end of a file

&> redirects stderr (2)

>& redirects stdout and stderr, e.g.: 2>&1 sends
stderr to the same place that stdout is going

<< gets input from a here document, i.e., the
input is what you type, rather than reading from
a file

Built in commands

« alias, unalias — create or remove a pseudonym or shorthand for a
command or series of commands

jobs, fg, bg, stop, notify — control process execution

command — execute a simple command

cd, chdir, pushd, popd, dirs — change working directory

echo — display a line of text

history, fc — process command history list

set, unset, setenv, unsetenv, export — shell built-in functions to
determine the characteristics for environmental variables of the
current shell and its descendents

* getopts — parse utility options

» hash, rehash, unhash, hashstat — evaluate the internal hash table
of the contents of directories

* kill— send a signal to a process

pwd — print name of current/working directory

shift — shell built-in function to traverse either a shell’'s argument list
or a list of field-separated words

readonly — shell built-in function to protect the value of the given
variable from reassignment

source — execute a file as a shell script

suspend — shell built-in function to halt the current shell

test — check file types and compare values

times — shell built-in function to report time usages of the current
shell

trap, onintr — shell built-in functions to respond to (hardware)
signals
type — write a description of command type

peset, whence — shell built-in functions to set/get attributes and
values for shell variables and functions

11

« limit, ulimit, unlimit — set or get limitations
on the system resources available to the
current shell and its descendents

« umask — get or set the file mode creation
mask

12

