
1

CS3157: Advanced
Programming

Lecture #12
Nov 28

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
• Update on webthumb
• Shell commands
• Time permitting:

– dynamic memory allocation (new/delete vs malloc/free)
– container classes
– Iterator classes
– Templates
– polymorphism

• Reading
– c++core ch 7-9,11-13

Announcements

• Final: 12/21 (wed) 1-4pm in class.
– Will post details on web
– Will hold a review session prior
– Will post online sample questions

webthumb
• Issues

– Most issues were related because people didn’t really
understand what they were using.

– Ideas!
• Problems

– Local server
– Ports
– Memory frame buffers
– Half screens
– Systems

• Explanations

2

Schedule:

• Will now break from cpp, and cover unix
utilities

• Might have time for some software
engineering background

• Will cover php next week
• Last lab will also be final hw

– Combine everything we’ve learned so far into
small project using anything you want.

Useful tools & commands

• wc – counts characters, words and lines in input
• grep – matches regular expression patterns in

input
• cut – extracts portions of each line from input
• sort – sorts lines of input
• sed – stream edits input
• ps – displays process list of running processes
• who – displays anyone logged in on the system

wc
• unix command: counts the number of characters/words/lines in its input
• input can be a file or a piped command (see below)
• example:
• filename = “hello.dat”
hello
world
• usage:
unix-prompt$ wc hello.dat
2 2 12 hello.dat
unix-prompt$ wc -l hello.dat
2 hello.dat
unix-prompt$ wc -c hello.dat
12 hello.dat
unix-prompt$ wc -w hello.dat
2 hello.dat

grep
• Global Regular Expression Parser

• one of the most useful tools in unix

• three standard versions:
– plain old grep
– extended grep: egrep
– fast grep: fgrep

• used to search through files for ... regular expressions!

• prints only lines that match given pattern

• a kind of filter

• BUT it’s line oriented

3

• input can be one or more files or can be piped into grep

• examples:
grep "ˆ[aeiou]" myfile
ls -1 | grep t

• useful options:
• -i ignore case
• -w match pattern as a word
• -l return only the filename if there’s a match
• -v reverse the normal action (i.e., return what doesn’t

match)

• examples:
grep -i "ˆ[aeiou]" myfile
grep -v "ˆ[aeiou]" myfile
grep -iv "ˆ[aeiou]" myfile

• how do you list all lines containing a digit?

• how do you list all lines containing a 5?

• how do you list all lines containing a 0?

• how do you list all lines containing 50?

• how do you list all lines containing a 5 and an 0?

cut

• unix command: extracts portions of each
line from input

• input can be a file or a piped command

• syntax: cut <-c|f> <-d>
• note that c and +f+ start with 1; default

delimiter is TAB

sort
• unix command: sorts lines of input

• input can be a file or a piped command (see
below)

• three modes: sort, check (sort -c), merge (sort -
m)

• syntax: sort <-t> <-n> <-r> <-o> POS1 -POS2+
• note that POS starts with 0; default delimiter is

whitespace

4

sed
• stream editor
• does not change the file it “edits”

• commands are implicitly global
• input can be a file or can be piped into sed

• example: substitute all A for B:
• sed ’s/A/B/’ myfile
• cat myfile | sed ’s/A/B/’

• use the -e option to specify more than one command at a time:
• sed -e ’s/A/B/’ -e ’s/C/D/’ myfile

• pipe output to a file in order to save it:
• sed -e ’s/A/B/’ -e ’s/C/D/’ myfile >mynewfile

sed
• sed can specify an address of the line(s) to affect
• if no address is specified, then all lines are affected
• if there is one address, then any line matching the address is affected
• if there are two (comma separated) addresses, then all lines between the

two addresses
• are affected
• if an exclamation mark (!) follows the address, then all lines that DON’T

match the
• address are affected
• addresses are used in conjunction with commands

• examples (using the delete (d) command):
sed ’$d’ myfile
sed ’/ˆ$/d’ myfile
sed ’1,/under/d’ myfile
sed ’/over/,/under/d’ myfile

• order of commands is important
• input is line oriented
• all editing commands are applied to each line, one at a

time
• then next line is read and editing commands are applied

to that linei
• etc

• for example:
sed -e ’s/pig/cow/’ -e ’s/cow/horse’ myfile
• what does this do?
• is this right???

• delimiter is slash (/)
• backslash (escape) it if it appears in the

command, e.g.:
sed ’s/\/usr\/bin\//\/usr\/etc/’
myfile

5

• meta-character ampersand (&) represents the
extent of the pattern matched

• example:
sed ’s/[0-9]/#&/’ myfile
• what does this do?

• you can also save portions of the matched
pattern:

sed ’s/\([0-9]\)/#\1/’ myfile
sed ’s/\([0-9]\)\([0-9]\)/#\1-\2/’ myfile

• transformation command: y
• example:
sed ’y/ABC/abc’ myfile

• print command: p

• example:
sed ’/begin/,/end/p’ myfile
sed -n ’/begin/,/end/p’ myfile

• what do the following sed commands do?
sed ’s/xx/yy’ myfile
sed ’/BSD/d’ myfile
sed ’/ˆBEGIN/,/ˆEND/p@’ myfile

• how do you change the content of all your html
files to lowercase?

• how do you change all the html commands to
lowercase?

6

shell
• sh is the “Bourne shell”, the first scripting language
• it is a program that interprets your command lines and runs other

programs
• it can invoke Unix commands and also has its own set of commands

while (1) {
print prompt and wait for user to enter input;
read input from terminal;
parse into words;
substitute variables;
execute commands (execv or builtin);
}

• shell commands can be read:
– from a terminal == interactive
– from a file == shell script

• search path
– the place where the shell looks for the commands it

runs
– should include standard directories:

• /bin
• /usr/bin
• it should also include your current working directory ()

• are you running the Bourne shell?
type:
$SHELL
• if the answer is /bin/sh, then you are
• if the answer is /bin/bash, then that’s close

enough
• otherwise, you can start the Bourne shell by

typing sh at the UNIX prompt
• enter Ctrl-D or exit to exit the Bourne shell and

go back to whatever shell you
• were running before...

• capable of both synchronous and asynchronous
execution
– synchronous: wait for completion
– asychronous: in parallel with shell (runs in the background)

• allows control of stdin, stdout, stderr

• enables environment setting for processes (using
inheritance between processes)

• sets default directory

7

• creating your own shell scripts
• naming:

– DON’T ever name your script (or any executable file) “test”
– since that’s a sh command

• executing
– the notation #! inside your file tells UNIX which shell should execute the commands in your

file

• example— create a file called “myscript.sh”
#!/bin/sh
echo hello world

• make the script executable: unix-prompt# chmod +x myscript.sh
• execute the script:
./myscript.sh
myscript.sh

• quote (’)
’something’: preserve everything literally and don’t evaluate

anything that is inside the quotes

• double quote (")
"something2": preserve most things literally, but also allow

$ variable expansion (but not ’ evaluation)

• backquote (‘)
‘something3‘: try to execute something as a command

• filename=t.sh
• #!/bin/sh
• hello="hi"
• echo 0=$hello
• echo 1=’$hello’
• echo 2="$hello"
• echo 3=‘$hello‘
• echo 4="‘$hello‘"
• echo 5="’$hello’"

• filename=hi
• #!/bin/sh
• echo "how did you get in here?"

output=
unix$ t.sh
0=hi
1=$hello
2=hi
3=how did you get in here?
4=how did you get in here?
5=’hi’

shell comments

• single line comments only (no multi-line
comments)

• line begins with # character

8

Simple commands
• sequence of words

• first word defines command
• can be combined with &&, ||, ;

– to execute commands sequentially:
cmd1; cmd2;

– to execute a command in the background :
cmd1&

– to execute two commands asynchronously:
cmd1&
cmd2&

– to execute cmd2 if cmd1 has zero exit status:
cmd1 && cmd2

– to execute cmd2 only if cmd1 has non-zero exit status:
cmd1 || cmd2

• set exit status using exit command (e.g., exit 0 or exit 1)

pipes
• sequence of commands
• connected with |

• each command reads previous command’s
output and takes it as input

• example:
echo "hello world" | wc -w
2

variables
• variables are placeholders for values
• shell does variable substitution
• $var or ${var} is the value of the variable
• assignment:

– var=value (with no spaces before or after!)
– let "var = value"
– export var=value

• BUT values go away when shell is done executing
• uninitialized variables have no value
• variables are untyped, interpreted based on context
• standard shell variables:

– ${N} = shell Nth parameter
– $$ = process ID
– $? = exit status

• filename=u.sh
#!/bin/sh
echo 0=$0
echo 1=$1
echo 2=$2
echo 3=$$
echo 4=$?

• output
unix$ u.sh
0=.//u.sh
1=
2=
3=21093
4=0

unix$ u.sh abc 23
0=.//u.sh
1=abc
2=23
3=21094
4=0

9

• shell variables are generally not visible to programs
• environment variables are a list of name/value pairs

passed to sub-processes
• all environment variables are also shell variables, but not

vice versa

• show with env or echo $var

• standard environment variables include:
– HOME = home directory
– PATH = list of directories to search
– TERM = type of terminal (vt100, ...)
– TZ = timezone (e.g., US/Eastern)

Loops

• similar to C/Java constructs, but with commands
• until test-commands; do consequent-commands;

done
• while test-commands; do consequent-

commands; done
• for name [in words ...]; do commands; done

• also on separate lines
• break and continue control loop

• while
i=0
while [$i -lt 10]; do
echo "i=$i"
((i=$i+1)) # same as let "i=$i+1"
done

• for
for counter in ‘ls *.c‘; do
echo $counter
done

if
if test-commands; then

consequent-commands;
[elif more-test-commands; then

more-consequents;]
[else alternate-consequents;]
fi

• colon (:) is a null command

• example
#!/bin/sh
if expr $TERM = "xterm"; then
echo "hello xterm";
else
echo "something else";
fi

10

case test-var in
value1) consequent-commands;;
value2) consequent-commands;;
*) default-commands;
esac

• pattern matching:
– ?) matches a string with exactly one character
– ?*) matches a string with one or more characters
– [yY]|[yY][eE][sS]) matches y, Y, yes, YES, yES...
– /*/*[0-9]) matches filename with wildcards like /xxx/yyy/zzz3
– notice two semi-colons at the end of each clause
– stops after first match with a value
– you don’t need double quotes to match string values!

example

#!/bin/sh
case "$TERM" in
xterm) echo "hello xterm";;
vt100) echo "hello vt100";;
*) echo "something else";;
esac

• biggest difference from traditional programming
languages

• shell substitutes and executes

• order:
– brace expansion
– tilde expansion
– parameter and variable expansion
– command substitution
– arithmetic expansion
– word splitting
– filename expansion

Command subing
• replace $(command) or ‘command‘ by stdout of executing command
• can be used to execute content of variables:
unix$ x=ls
unix$ $x
myfile.c
a.out
unix$ echo $x
ls
unix$ echo ‘ls‘
myfile.c
a.out
unix$ echo ‘x‘
sh: x: command not found
unix$ echo ‘$x‘
myfile.c
a.out
unix$ echo $(ls)
myfile.c
a.out
unix$ echo $(x)
sh: x: command not found
unix$ echo $($x)
myfile.c
a.out

11

Filename expansion
• any word containing *?([is considered a pattern
• * matches any string
• ? matches any single character
• [...] matches any of the enclosed characters
unix$ ls
myfile.c
a.out
a.b
unix$ ls a*
a.out
a.b
unix$ ls a?
ls: No match.
unix$ ls a.*
a.out
a.b
unix$ ls a.?
a.b
unix$ ls a.???
a.out
unix$ ls [am].b
a.b

redirection
• stdin, stdout and stderr may be redirected
• < redirects stdin (0) to come from a file
• > redirects stdout (1) to go to file
• >> appends stdout to the end of a file
• &> redirects stderr (2)
• >& redirects stdout and stderr, e.g.: 2>&1 sends

stderr to the same place that stdout is going
• << gets input from a here document, i.e., the

input is what you type, rather than reading from
a file

Built in commands
• alias, unalias — create or remove a pseudonym or shorthand for a

command or series of commands
• jobs, fg, bg, stop, notify — control process execution
• command — execute a simple command
• cd, chdir, pushd, popd, dirs — change working directory
• echo — display a line of text
• history, fc — process command history list
• set, unset, setenv, unsetenv, export — shell built-in functions to

determine the characteristics for environmental variables of the
current shell and its descendents

• getopts — parse utility options
• hash, rehash, unhash, hashstat — evaluate the internal hash table

of the contents of directories
• kill — send a signal to a process

• pwd — print name of current/working directory
• shift — shell built-in function to traverse either a shell’s argument list

or a list of field-separated words
• readonly — shell built-in function to protect the value of the given

variable from reassignment
• source — execute a file as a shell script
• suspend — shell built-in function to halt the current shell
• test — check file types and compare values
• times — shell built-in function to report time usages of the current

shell
• trap, onintr — shell built-in functions to respond to (hardware)

signals
• type — write a description of command type
• typeset, whence — shell built-in functions to set/get attributes and

values for shell variables and functions

12

• limit, ulimit, unlimit — set or get limitations
on the system resources available to the
current shell and its descendents

• umask — get or set the file mode creation
mask

