
1

CS3157: Advanced
Programming

Lecture #11
Nov 21

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
• Feedback
• More CPP

– Language basics: identifiers, data types, operators, type
conversions, branching and looping, program structure

– data structures: arrays, structures
– pointers and references
– I/O: writing to the screen, reading from the keyboard, iostream

library
– classes: defining, scope, ctors and dtors

• Reading
– c++core ch 3-6

Feedback

• Emailing TA
– If you send an email and do not get a reply

(mutliple emails) its possible they are not
getting it….try to cc myself or go talk to the TA
during office hours.

• Problems with the labs
– C string comparisons
– Pointers

C++ vs. Java
• advantages of C++ over Java:

– C++ is very powerful
– C++ is very fast
– C++ is much more efficient in terms of memory
– compiled directly for specific machines (instead of bytecode layer, which

could also be seen as a portability advantage of Java over C++...)

• disadvantages of C++ over Java:
– Java protects you from making mistakes that C/C++ don’t, as you’ve

learned now from working with C
– C++ has many concepts and possibilities so it has a steep learning

curve
– extensive use of operator overloading, function overloading and virtual

functions can very quickly make C++ programs very complicated
– shortcuts offered in C++ can often make it completely unreadable, just

like in C

2

Identifiers
• i.e., valid names for variables, methods, classes, etc
• just like C:

– names consist of letters, digits and underscores
– names cannot begin with a digit
– names cannot be a C++ keyword

• literals are just like in C with a few extras:
– numbers, e.g.: 5, 5u, 5L, 0x5, true
– characters, e.g., ’A’
– strings, e.g., "you" which is stored in 4 bytes as ’y’, ’o’, ’u’, ’\0’

data types
• simple native data types: bool, int, double, char, wchar_t

• bool is like boolean in Java

• wchar_t is “wide char” for representing data from
character sets with more than 255 characters

• modifiers: short, long, signed, unsigned, e.g., short int

• floating point types: float, double, long double

• enum and typedef just like C

Operators

• same as C, with some additions

• if you recognize it from C, then it’s pretty
safe to assume it is doing the same thing
in C++

Type conversions
• all integer math is done using int datatypes, so all types (bool, char,

short, enum) are promoted to int before any arithmetic operations
are performed on them

• mixed expressions of integer / floating types promote the lower type
to the higher type according to the following hierarchy:

int < unsigned < long < unsigned long
< float < double < long double
• you can do explicit conversions like in C using (int), e.g.
• you can also do explicit conversions using C++ operators:

– static_cast – safe and portable; e.g. c = static_cast<char>(i);
– reinterpret_cast – system dependent, not good to use
– const_cast – lets you change a const into a modifiable variable
– dynamic_cast – used at run-time for casting objects from one class to

another (within inheritance hierarchy); this is sort of like Java but can
get really messy and is really a more advanced topic...

3

Branching and Looping
• if, if/else just like C and Java

• while and for and do/while just like C and Java

• break and continue just like C and Java

• switch just like C and Java

• goto just like C (but don’t use it!!!)

Program structure
• just like in C

• program is a collection of functions and declarations

• language is block-structured

• declarations are made at the beginning of a block;
allocated on entry to the block and freed when exiting
the block

• parameters are call-by-value unless otherwise specified

arrays
• similar to C

• dynamic memory allocation handled using new and
delete instead of malloc (and family) and free

• examples:
int a[5];
char b[3] = { ’a’, ’b’, ’c’ };
double c[4][5];
int *p = new int(5); // space allocated and *p set to 5
int **q = new int[10]; // space allocated and q = &q[0]
int *r = new int; // space allocated but not initialized

Structures
• struct keyword like in C (but you don’t need typedef) (last class)

• use dot operator or -> to access members (fields) of a struct or struct *

• C++ allows functions to be members, whereas C only allows data
members (i.e., fields)

• example
struct point {
public:
void print() const { cout << "(" << x "," << y << ")"; }
void set(double u, double v) { x=u; y=v; }
private:
double x, y;
}

4

Pointers and References
• pointers are like C:

– int *p means “pointer to int”
– p = &i means p gets the address of object i. references are not like C!! they are

basically aliases – alternative names – for the values stored at the indicated
memory locations, e.g.:

int n;
int &nn = n;
double a[10];
double &last = a[9];

• The difference between them:
int a = 5; // declare and define a
int *p = &a; // p points to a
int &refa = a; // alias (reference) for a
*p = 7; // *p points to a, so a is assigned 7
refa = *p + 1; // a is assigned value of *p=7 plus 1

I/O Screen
// hello world in C++
#include <iostream>
using namespace std;
int main() {
cout << "hello world" << endl;
}

• comment characters are // or /* ... */, just like Java
• using namespace is sort of like importing a package in Java; it is

used in conjunction with the header declaration
• you could also say #include <iostream.h> and leave out the using

namespace std; line; this is an older style of C++ but it still works
• cout << is like System.out.print in Java or like printf() in C
• endl outputs a newline; saying cout << "\n"; does the same thing

– Advantage is its system dependant

I/O keyboard
• read from the keyboard using cin >>, which is like scanf()

in C

• example:
#include <iostream>
using namespace std;
int main() {
int i;
cout << "enter a number: ";
cin >> i;
cout << "you entered " << i <<"\n";
}

C++ iostream
• two bit-shift operators:

– << meaning “put to” output stream (“left shift”)
– >> meaning “get from” input stream (“right shift”)

• three standard streams:
– cout is standard out
– cin is standard in
– cerr is standard error

• the iostream library is “type safe”, so you don’t have to
use formatting statements:
variables are input/output based on their datatype

5

ostream and istream
• ostream

– cout is an ostream, << is an operator
– use cout.put(char c) to write a single char
– use cout.write(const char *p, int n) to write n chars
– use cout.flush() to flush the stream

• istream
– cin is an istream, >> is an operator
– use cin.get(char &c) to read a single char
– use cin.get(char *s, int n, char c=’\n’) to read a line (inputs into

string s at most n-1 characters, up to the specified delimiter c or
an EOF; a terminating 0 is placed at the end of the input string s)

– also cin.getline(char *s, int n, char c=’\n’)
– use cin.read(char *s, int n) to read a string

Formatted output
• in <iomanip> header file, the following are

defined:

• scientific – prints using scientific notation
• left – fills characters to right of value
• right – fills characers to left of value
• internal – fills characters between sign and value
• setfill(int) – sets fill character
• setw(int) – sets field width
• setprecision(int) – sets floating point precision

Example

• cout << setprecision(3) << 2.34563;

Declaring Class
• Almost like struct, the default privacy specification is private whereas

with struct, the default privacy specification is public
• example
class point {
double x, y; // implicitly private
public:
void print();
void set(double u, double v);
}

• classes can be nested (like java)
• static is like in Java, with some weird subtleties

6

Using
point x;
x.set(3,4);
x.print();

point *pptr = &x;

pptr->set(3,2);
pptr->print();

Classes: function overloading and
overriding

• overloading:
– when you use the same name for functions with different

signatures
– functions in derived class supercede any functions in base class

with the same name
• overriding:

– when you change the behavior of base-class function in a
derived class

– DON’T OVERRIDE BASE-CLASS FUNCTIONS!!

• because compiler can invoke wrong version by mistake
• but init() is okay to override
• (more explanation in ch 12...)

Access specifiers

• In class declaration can have:
• Public

– Anyone can access
• Private

– Only class members and friends can access

Access specifiers
• public

– public members
– can be accessed from any function

• private members
– can only be accessed by class’s own members
– and by “friends” (see ahead)

• Protected
– Class members, derived, and friends.

• “access violations” when you don’t obey the rules...
• can be listed in any order
• can be repeated

7

Class scope
• ::
• example:
::i // refers to external scope
point::x // refers to class scope
std::count // refers to namespace scope

• given previous definition of point, we could do:
point p;
p.print();
p.point::print(); // redundant but legal

Defining functions
void point::print(){
cout << "(" << x "," << y << ")";
}

void point::set(double u, double v)
{ x=u; y=v; }

Constructors and destructors
• constructors are called ctors in C++; they take the same name as the class

in which they are defined, like in Java

• destructors are called dtors in C++; they take the same name as the class in
which they are defined, preceded by a tilde (˜); sort of like finalize in Java

• ctors can be overloaded and can take arguments

• dtors can not

• default constructor has no arguments

• constructor with one argument is a conversion constructor that converts its
argument datatype to an object of the class being constructed

• constructor initializer is a special type of constructor that is used to initialize
the values of data members of a class

class point {
double x,y;
public:
point() { x=0;y=0; } // default
point(double u) {x =u; y=0; }
// conversion
point(double u, double v)
{ x =u; y =v;}

.

.

.
}

8

usage

point p;

Constructors II
• default constructor (ctor”)
• has same name as class it constructs
• in array5.cpp, ctor is used instead of init()
• declare as:
class IntArray() {
public:
IntArray();
// etc
}
void IntArray::IntArray() {
numElems = 0;
elems = 0;
} // end of default constructor

• invoked when object is allocated: IntArray a;
• but remember that built-in types are not automatically initialized

destructors
• default destructor (“dtor”)
• performs same job as cleanup():
class IntArray {
public:
IntArray(); // constructor
˜IntArray(); // destructor
// etc
}
void IntArray::˜IntArray() {
if (elems != 0) free(elems);
}

• invoked automatically when object is no longer usable (i.e., when it
is popped off the stack, like a local function variable)

ctor and dtor
• chaining

– constructors and destructors are chained automatically
– derived class ctors invoke base class constructors and
– execute in reverse order (lowest base class first)
– derived class dtors invoke base class dtors and execute in order (derived class

first)
• arrays

– default ctors and dtors are called on each element in the array
• implicit ctors and dtors exist (and are invoked) if you don’t write them

explicitly

• ctors and dtors can be private, but typically are public

• never invoke default ctors or dtors explicitly!
e.g.: ia.IntArray(); // NO!!!
ia.˜IntArray(); // NO!!

9

Abstraction with member functions
• example #1: array1.cpp
• example #2: array2.cpp

– array1.cpp with interface functions

• example #3: array3.cpp
– array2.cpp with member functions

• class definition

• public vs private

• declaring member functions inside/outside class definition

• scope operator (::)

• this pointer

array1.cpp
struct IntArray {
int *elems;
size_t numElems;

};
main() {
IntArray powersOf2 = { 0, 0 };
powersOf2.numElems = 8;
powersOf2.elems = (int *)malloc(powersOf2.numElems *
sizeof(int));
powersOf2.elems[0] = 1;
for (int i=1; i<powersOf2.numElems; i++) {
powersOf2.elems[i] = 2 * powersOf2.elems[i-1];

}
cout << "here are the elements:\n";
for (int i=0; i<powersOf2.numElems; i++) {
cout << "i=" << i << " powerOf2=" <<

powersOf2.elems[i] << "\n";
}
free(powersOf2.elems);

}

array2
void IA_init(IntArray *object) {
object->numElems = 0;
object->elems = 0;

} // end of IA_init()

void IA_cleanup(IntArray *object) {
free(object->elems);
object->numElems = 0;

} // end of IA_cleanup()

void IA_setSize(IntArray *object, size_t value) {
if (object->elems != 0) {
free(object->elems);

}
object->numElems = value;
object->elems = (int *)malloc(value * sizeof(int));

} // end of IA_setSize()

size_t IA_getSize(IntArray *object) {
return(object->numElems);

} // end of IA_getSize()

Class friends

• allows two or more classes to share
private members

• e.g., container and iterator classes

• friendship is not transitive

10

heirarchy
• composition:

– creating objects with other objects as members
– example: array4.cpp

• derivation:
– defining classes by expanding other classes
– like “extends” in java
– example:

class SortIntArray : public IntArray {
public:
void sort();
private:
int *sortBuf;
}; // end of class SortIntArray
• “base class” (IntArray) and “derived class” (SortIntArray)
• derived class can only access public members of base class

• complete example: array5.cpp
– public vs private derivation:

• public derivation means that users of the derived class
can access the public portions of the base class

• private derivation means that all of the base class is
inaccessible to anything outside the derived class

• private is the default

Class derivation
• encapsulation

– derivation maintains encapsulation
– i.e., it is better to expand IntArray and add sort() than to modify your own version

of IntArray

• friendship
– not the same as derivation!!
– example:

• is a friend of
• B2 is a friend of B1
• D1 is derived from B1
• D2 is derived from B2
• B2 has special access to private members of B1 as a friend
• But D2 does not inherit this special access
• nor does B2 get special access to D1 (derived from friend B1)

Derivation and pointer conversion
• derived-class instance is treated like a base-class instance
• but you can’t go the other way
• example:
main() {
IntArray ia, *pia;
// base-class object and pointer
StatsIntArray sia, *psia;
// derived-class object and pointer
pia = &sia; // okay: base pointer -> derived object
psia = pia; // no: derived pointer = base pointer
psia = (StatsIntArray *)pia; // sort of okay now since:
// 1. there’s a cast
// 2. pia is really pointing to sia,
// but if it were pointing to ia, then
// this wouldn’t work (as below)
psia = (StatsIntArray *)&ia; // no: because ia isn’t a

StatsIntArray

11

• danger:
– don’t point a base class pointer to an array of

derived objects!
– they aren’t the same size!

Next time

• Work on hw
• Will post lab tomorrow night online
• Will post examples

• Do reading:
– chapters: 7-9,11-13

