
1

1

CS1007: Object Oriented Design
and Programming in Java

Lecture #8
Feb 9

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• Review and some basics
• Enforcing Encapsulation
• Unit Testing
• Sorting Algorithms
• Polymorphism
• Interfaces
• Basic graphics
• Layout managers
• Anonymous Classes

2

3

Announcement

• If you are having trouble with the
HW…please see me

• I will be releasing the next hw over the
weekend

• Please do not be embarrassed to ask
basic programming questions….its the
only way to learn

4

Word on packages

• If you create a package called “mastermind” all
classes will sit in a mastermind directory

• mastermind/Guess.java

• To manually compile:
• Directory containing mastermind directory

– javac mastermind/*.java
– java mastermind.GuessMainGame class with main

in it.

3

5

Exceptions

• Lot of confusion on
using/setting/programming exceptions

• Have you stopped by oh?
• Have you done background reading in a

java book?

6

From last Time

• Basic principle of OOD
– Encapsulation

– Using accessors and mutators to limit outside
view of internal implimentation

4

7

• Immutable object – are those which can’t
be changed once set…That is its state is
guaranteed to stay identical over its
lifetime
– Simple to use and understand
– Great building blocks

8

final keyword
• final modifier has different meanings depending

on context

– Variables
• Can only set value once

– Parameters
• Can not change value

– Methods
• No one can redefine this class

– Classes
• Can’t inherit from this class

5

9

Final Instance Fields

• Good idea to mark immutable instance
fields as final

private final int day;

• final object reference can still refer to
mutating object

private final ArrayList elements;

• elements can't refer to another array list
• The contents of the array list can change

10

• Want to create a simple class:
• Represent an employee

– Name
– Salary
– Hire date

What would base class look like?

6

11

• Which methods would we add?

12

Some code:

class Employee
{

. . .
public String getName() { return name; }
public double getSalary() { return salary; }
public Date getHireDate() { return hireDate; }
private String name;
private double salary;
private Date hireDate;

}

7

13

Setting data

• How would set hire date be written?

14

Danger of sharing
• Pitfall:

Employee harry = . . .;
Date d = harry.getHireDate();
d.setTime(t); // changes Harry's state!!!

• Remedy: Use clone

public Date getHireDate()
{

return (Date)hireDate.clone();
}

8

15

Visually

16

Separating your Accessors and
Mutators

• If we call a method to access an object, we don't expect
the object to mutate

• Rule of thumb:
Mutators should return void

• Example of violation:

Scanner in = . . .;
String s = in.next();

• Yields current token and advances iteration
• What if I want to read the current token again?

9

17

• Better interface:

String getCurrent();
void next();

• Even more convenient:

String getCurrent();
String next(); // returns current

• Refine rule of thumb:
Mutators can return a convenience value, provided there is also an
accessor to get the same value

18

Side Effect
• Side effect of a method: any observable state change
• Mutator: changes implicit parameter
• Other side effects: change to

– explicit parameter
– static object

• Avoid these side effects--they confuse users
• Good example, no side effect beyond implicit parameter

a.addAll(b)

mutates a but not b

10

19

Background

• SimpleDateFormat API
– Allows you to move from text->date and date-

>text using patterns
– "EEE, MMM d, ''yy" == Wed, Jul 4, '01
– "h:mm a" == 12:08 PM

20

Side Effects II
• Date formatting (basic):

SimpleDateFormat formatter = . . .;
String dateString = "January 11, 2012";
Date d = formatter.parse(dateString);

• Advanced:

FieldPosition position = . . .;
Date d = formatter.parse(dateString, position);

• Side effect: updates position parameter
• Design could be better: add position to formatter state

11

21

III
• Avoid modifying static objects
• Example: System.out
• Don't print error messages to System.out:

if (newMessages.isFull())
System.out.println("Sorry--no space");

• WHY???
• Rule of thumb: Minimize side effects beyond implicit

parameter

22

Idea:

• For real object oriented programming,
should be a minimum of objects floating in
memory.
– Using just methods to change objects
– More responsibilities per object, but cleaner

overall design

12

23

• Example: Mail system in chapter 2
Mailbox currentMailbox =

mailSystem.findMailbox(...);

• Breaks encapsulation!!
• Suppose future version of MailSystem

uses a database
• Then it no longer has mailbox objects
• Common in larger systems
• Karl Lieberherr: Law of Demeter

24

• The law: A method should only use objects that are

– instance fields of its class
– parameters
– objects that it constructs with new

• Shouldn't use an object that is returned from a method call
• Remedy in mail system: Delegate mailbox methods to mail system
mailSystem.getCurrentMessage(int mailboxNumber);
mailSystem.addMessage(int mailboxNumber, Message msg);
. . .
• Rule of thumb, not a mathematical law
• Design of what not to do….

13

25

Emphasis

• Some of the design choices come with
experience

• No “One size fits all solution”
• Solution to balance decisions:

– Documentation
– Redesign

26

Designing projects

• Will now talk about what goes into designing a
set of classes which work together

• Remember
– In general you will both give and be given only class

files.
– Along with the documentations (API) it is the only to

know
• What
• How
• Why

14

27

Quality of Class Interface
• Customers: Programmers using the class

– Cohesion
– Completeness
– Convenience
– Clarity
– Consistency

• Engineering activity: make tradeoffs

28

Cohesion
• Class describes a single abstraction
• Methods should be related to the single abstraction
• Bad example:

public class Mailbox
{

public addMessage(Message aMessage) { ... }
public Message getCurrentMessage() { ... }
public Message removeCurrentMessage() { ... }
public void processCommand(String command) { ...
}
...

}

15

29

Completeness
• Support operations that are well-defined on abstraction
• Potentially bad example: Date

Date start = new Date();
// do some work
Date end = new Date();

• How many milliseconds have elapsed?
• No such operation in Date class
• Does it fall outside the responsibility?
• After all, we have before, after, getTime

30

Convenience
• A good interface makes all tasks possible . . . and

common tasks simple
• Bad example: Reading from System.in before Java 5.0

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

• Why doesn't System.in have a readLine method?
• After all, System.out has println.
• Scanner class fixes inconvenience

16

31

• What is wrong with hard to read code??

32

• At least no one will be able to fix it (aka job
security)

• Problem: they might hire you to fix it
• Discourages reuse and redesign

17

33

Be Clear
• Confused programmers write buggy code
• Bad example: Removing elements from LinkedList
• Reminder: Standard linked list class

LinkedList countries = new LinkedList();
countries.add("A");
countries.add("B");
countries.add("C");

• Iterate through list:

ListIterator iterator = countries.listIterator();
while (iterator.hasNext())

System.out.println(iterator.next());

34

• Iterator between elements
• Like blinking caret in word processor
• add adds to the left of iterator (like word

processor):
• Add X before B:

ListIterator iterator =
countries.listIterator(); // |ABC

iterator.next(); // A|BC
iterator.add("France"); // AX|BC

18

35

Interesting
• To remove first two elements, you can't just "backspace"
• remove does not remove element to the left of iterator
• From API documentation:
Removes from the list the last element
that was returned by next or previous.
This call can only be made once per call
to next or previous. It can be made only
if add has not been called after the last
call to next or previous.

• Huh?

36

Be Consistent
• Related features of a class should have matching

– names
– parameters
– return values
– behavior

• Bad example:

new GregorianCalendar(year, month - 1, day)

• Why is month 0-based?

19

37

Consistency
• Bad example: String class

s.equals(t) vs. s.equalsIgnoreCase(t)

• But

boolean regionMatches(int toffset,
String other, int ooffset, int len)

boolean regionMatches(boolean ignoreCase, int
toffset,
String other, int ooffset, int len)

• Why not regionMatchesIgnoreCase?
• Very common problem in student code

38

Programming by Contract

• Spell out responsibilities

– of caller
– of implementer

• Increase reliability
• Increase efficiency

20

39

Preconditions

• Caller attempts to remove message from
empty MessageQueue

• What should happen?
• MessageQueue can declare this as an

error
• MessageQueue can tolerate call and

return dummy value
• What is better?

40

Make exception .. exceptional
• Excessive error checking is costly
• Returning dummy values can complicate testing
• Contract metaphor

– Service provider must specify preconditions
– If precondition is fulfilled, service provider must work

correctly
– Otherwise, service provider can do anything

• When precondition fails, service provider may
– throw exception
– return false answer
– corrupt data

21

41

Preconditions
/**

Remove message at head
@return the message at the head
@precondition size() > 0

*/
Message remove()
{

return elements.remove(0);
}

• What happens if precondition not fulfilled?
• IndexOutOfBoundsException
• Other implementation may have different behavior

42

Arrays and queues

• If you have a queue

• What does it mean to remove a message?

22

43

• What does it mean to remove a message
if the queue is empty?

44

Next Time

• Read chapter 3 in the book

• Wrap up hw1

• Check out hw2 (Sunday)

