CS1007: Object Oriented Design and Programming in Java

Lecture #7

Feb 7

Shlomo Hershkop shlomo@cs.columbia.edu

Encapsulation

- Hide implementation details
- Data access always done through methods
- Accessors and Mutators
- 2 levels of protection
 - State can not be changed directly from outside
 - Implementation can change without affecting users

• So how would a credit card object be described from an outside point of view?

Class design

- When designing a class need to be aware
 - What will the class represent
 - What processing is it going to be doing
 - What are the relationships to other classes
- Remember:
 - There is more than one way to represent an idea
 - Don't be afraid of going back and changing something

Goal

- The goal of a well designed class
- Reusability but all that hard work to work
- **Reliability** if you find a bug can easily isolate it
- Encapsulation can always come back and upgrade without changing anything else

Measuring Time

• Date class in standard Library (very useful)

```
Date now = new Date();
    // constructs current date/time
System.out.println(now.toString());
    // prints date such as
    // Tue Feb 07 11:34:10 EST 2006
```


- Date class encapsulates point in time measured in milliseconds
- What is the best way?

Date	class methods
boolean after(Date other)	Tests if this date is after the specified date
boolean before(Date other)	Tests if this date is before the specified date
int compareTo(Date other)	Tells which date came before the other
long getTime()	Returns milliseconds since the epoch (1970-01-01 00:00:00 GMT)
void setTime(long n)	Sets the date to the given number of milliseconds since the epoch

Date Class

- Deprecated methods were re-thought
- Date class methods supply total ordering on Date objects
- Convert to scalar time measure
- Note that before/after not strictly necessary
- (Presumably introduced for convenience)
- "I'll see you on 996,321,998,346." doesn't really work

<pre>nextDay() nt y = year; nt m = month; nt d = date; f (y == GREGORIAN_START_YEAR</pre>
<pre>nt m = month; nt d = date; f (y == GREGORIAN_START_YEAR && m == GREGORIAN_START_MONTH && d == JULIAN_END_DAY)</pre>
<pre>nt m = month; nt d = date; f (y == GREGORIAN_START_YEAR && m == GREGORIAN_START_MONTH && d == JULIAN_END_DAY)</pre>
nt d = date; f (y == GREGORIAN_START_YEAR && m == GREGORIAN_START_MONTH && d == JULIAN_ENN_DAY)
f (y == GREGORIAN_START_YEAR && m == GREGORIAN_START_MONTH && d == JULIAN_END_DAY)
&& m == GREGORIAN_START_MONTH && d == JULIAN_END_DAY)
&& m == GREGORIAN_START_MONTH && d == JULIAN_END_DAY)
&& d == JULIAN_END_DAY)
d = GREGORIAN START DAY;
lse if (d < daysPerMonth(y, m))
d++;
lse
d = 1i
m++;
if (m > DECEMBER)
{
m = JANUARY;
γ++;
if (y == 0) y++;
}
eturn new Day(y, m, d);
eturn new Day(y, m, d);

```
private static int daysPerMonth(int y, int m)
{
    int days = DAYS_PER_MONTH[m - 1];
    if (m == FEBRUARY && isLeapYear(y))
        days++;
        return days;
}
private static boolean isLeapYear(int y)
{
    if (y % 4 != 0) return false;
    if (y < GREGORIAN_START_YEAR) return true;
    return (y % 100 != 0) || (y % 400 == 0);
}</pre>
```


Notice

- Private helper methods
- Notice all the work to increment a day

Another idea

- For greater efficiency, use Julian day number
- Used in astronomy
- Number of days since Jan. 1, 4713 BCE
- May 23, 1968 = Julian Day 2,440,000
- Greatly simplifies date arithmetic

Code

public Day(int aYear, int aMonth, int aDate)
{

julian = toJulian(aYear, aMonth, aDate);

private int julian;

}

```
Code
private static int toJulian(int year, int month, int date)
{
   int jy = year;
   if (year < 0) jy++;
   int jm = month;
   if (month > 2) jm++i
   else{
          ју--;
          jm += 13;
    }
   int jul = (int) (java.lang.Math.floor(365.25 * jy)
   + java.lang.Math.floor(30.6001 * jm) + date + 1720995.0);
int IGREG = 15 + 31 * (10 + 12 * 1582);
         // Gregorian Calendar adopted Oct. 15, 1582
   if (date + 31 * (month + 12 * year) >= IGREG)
// Change over to Gregorian calendar
    {
   int ja = (int) (0.01 * jy);
jul += 2 - ja + (int) (0.25 * ja);
    }
   return jul;
}
```

Any other ideas?

Why should you encapsulate?

- Even a simple class can benefit from different implementations
- Users are unaware of implementation
- Public instance variables would have blocked improvement
 - Can't just use text editor to replace all
 - d.year
 - with
 - d.getYear()
 - How about
 - d.year++?
 - d = new Day(d.getDay(), d.getMonth(), d.getYear() + 1)
 - Ugh--that gets really inefficient in Julian representation
- Don't use public fields, even for "simple" classes

Accessors and Mutators

- Day class has no mutators!
- · Class without mutators is immutable
- String is immutable
- Date and GregorianCalendar are mutable

Don't Supply a Mutator for every Accessor

Day has getYear, getMonth, getDate accessors
Day does not have setYear, setMonth, setDate mutators
These mutators would not work well

Example:
Day deadline = new Day(2001, 1, 31); deadline.setMonth(2); // ERROR deadline.setDate(28);
Maybe we should call setDate first?

Day deadline = new Day(2001, 2, 28); deadline.setDate(31); // ERROR deadline.setMonth(3);
GregorianCalendar implements confusing rollover.

Silently gets the wrong result instead of error.

Next Time

- Understand the 3 Day implementations covered in class.
- Do reading for chapter 3