CS1007: Object Oriented Design
and Programming in Java

Lecture #6
Feb 2

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
Feedback
Wrap up last time stuff
Actual Code

More Background material
— Some Theory

— Encapsulation

— Inheritance

— Interface

Class design

Reading
— Chapter 2.5-end, 3.1

Feedback

* Interface questions
— We will cover code examples today
— What if you choose a random class to implement
mouseListener
 If something is confusing...see me after class or
next office hours...each lecture builds on the last

» Voicemail VS other example

— Limited time for class

— Want to make sure everyone understands the book,
this will come into play when we do code review

Feedback

» Explanation of what we did last time (and
today) for UML + voice system

» Please TELL me if you need more time to
copy down something....you might not be
the only one

« Software engineering in general is
abstract, so we cover it on theory, doc,
code levels

Feedback

« UML design requirements on the HWs?
— Will be told which docs you need to generate
 How many diagrams /use cases
necessary?
— Usually we will do specific ones on hw
« Java inheritance, Javadoc
— Will cover today
* Interface/Extend class

Announcement

» For the homework, you should be adding
methods and/or constructors as you see
fit....the assignment is just bare minimum

* Q: Don’t know where to begin.....
* Q: Need programming help....
» A: OH = Office Hours

From last time

* We covered basic UML building blocks
» Started to sketch out UML/CRC of a voice
mail system

— Result in a few basic pieces and relationship
— Will now look at charts

— If you don’t follow a step, please stop me and
ask

UML Class Diagram for Mall
System

* CRC collaborators yield dependencies
= Mai Ibox depends on MessageQueue
= Message doesn't depends on Mai 1box

= Connection depends on Telephone,
Mai ISystem, Message, Mailbox

e Telephone depends on Connection

Dependency Relationships

MailSystem .

)

| y Message
% Mailbox [e--smesemmmomanaaaas 2 Queus

e Connection ¢

"X Message

Telephone [--==--==-======s==- :

Aggregation Relationships

A mail system has mailboxes
A mailbox has two message queues

A message queue has some number of
messages

A connection has a current mailbox.

A connection has references to a
mailsystem and a telephone

10

UML Class Diagram for Voice Mall
System

MailSystem

Message
Queue

|

Mailbox

———————> Connection

A Message

Telephong |--—--=-—ccccceee o i

11

Sequence Diagram for Use Case:
Leave a message

Connection i Mﬁr'ﬁ]ﬁ]ﬂn‘ ‘ Mailbox ‘
] i . H
i] H
dial ' : i
gelGlmeling :
LJ‘ Speql i
i
T ! 1
L ecornd L '
1] ’
hangup y
i wcred e Message
'
! .
addMessage LJ i
; |
]
L]
7]
! i
X]

12

Interpreting this Sequence Diagram

» Each key press results in separate call to dial, but only
one is shown

» Connection wants to get greeting to play

» Each mailbox knows its greeting

» Connection must find mailbox object:

Call findMailbox on MailSystem object

» Parameters are not displayed (e.g. mailbox number)
» Return values are not displayed (e.g. found mailbox)

* Note that connection holds on to that mailbox over
multiple calls

13

Sequence Diagram: Retrieve
messages

s age

14

Connection State Diagram

connected

hang up

extension dialed

hang up

passcode entered

massage
menu

15

More javadoc

For javadoc to work the javadoc style
comments
1. Immediately precede
* Public class

e Public method
e Public item

2. [** */

16

Tags

e @param ParamName describtion
e @return describtion of return value
e @throws ExceptionType explanation

e @author yourname
e @version version info
e @see Package.Class

17

Running javadoc

javadoc —d doc_dir package name

Near the classes

Can run on single class
— Javadoc something.java

Javadoc -?

18

Code

» Will look at all the components of the code
in chapter 2.

19
0l: /**
02: A message left by the caller.
03: */
04: public class Message
05: {
06: /**
07: Construct a Message object.
08: @param messageText the message text
09: */
10: public Message(String messageText)
11: {
12: text = messageText;
13: 3}
14:
15: /**
16: Get the message text.
17: @return message text
18: */
19: public String getText()
20: {
21: return text;
22: }
23:
24: private String text;
25: }
20

10

For MessageQueue

36: /**
37: Get the total number of messages in the queue.
38: @return the total number of messages in the queue
39: */
40: public int size(Q)
41: {
42: return queue.size();
43: 3}
44:
45: /**
46: Get message at head.
47: @return message that is at the head of the queue, or null
48: if the queue is empty
49: */
50: public Message peek()
51: {
52: if (queue.size() == 0) return null;
53: else return queue.get(0);
54: 3}
55:
56: private ArraylList<Message> queue;
57: }
21

01: import java.util.Scanner;
02:
03: /**
04: This program tests the mail system. A single phone
05: communicates with the program through

System. in/System.out.
06: */
07: public class MailSystemTester
08: {
09: public static void main(String[] args)
10: {
11: MailSystem system = new MailSystem(MAILBOX_COUNT);
12: Scanner console = new Scanner(System.in);
13: Telephone p = new Telephone(console);
14: Connection ¢ = new Connection(system, p);
15: p-run(c);
16: 3}
17:
18: private static final int MAILBOX_COUNT = 20;
19: } 22

11

Violet

« Simple UML system
« Will demo

» Be sure to download and play with it
before hw2

23

Background

» |nterface
* Theory
e Class hierarchies

24

12

Interface in Java

Just like a class is a type so it an interface
Used to define a behavior
Can not create an instance

A class can choose to implement an
interface thus in a sense instantiating the
interface

Idea of something.....

25

Example

* Music player control
* What would we expect to see supported?

 What does it mean in context?

26

13

Interface definition

» Generally set public access

« Contains method signatures
—public boolean i1sActive();
—public void startCount(int count);

* Can also contain defined constants
—public static final Int START = O;

27

public interface musicControl {

[

* Will rewind the player n moves
* @param n number of moves to move back
*

puglic void setRewind(int n);
public void fastForward();

public void play(Q);

public void pause();

public void jumpShuffle();

public void jumpForward();

public void jumpBackward();

28

14

public interface musicControl {

public static int SHUFFLE =0;

public static int FORWARD = 1;

public static int BACKWARD = 2;

/**

* Will rewind the player n moves

* @param n number of moves to move back
*/

public void setRewind(int n);

public void fastForward();
public void playQ;
public void pauseQ);

public void jump(int n);

29

How to use the interface

» Class says “implements ..”

— public class cheaplPOD implements musicPlayer {
* If more than one, use commas to seperate
» Must define all interface methods

* Interface is a type, so that if the class
implements it, | can pass it to a method
which expects the interface type

public void calculate(musicPlayer Xx)

30

15

public class cheaplpod impliments
musicPlayer{

public void jump(int j) {

iT(J == musicPlayer_.SHUFFLE) { ..}
else 1f(J == musicPlayer . FORWARD){..}
else 1f(J == musicPlayer . BACKWARD){..}
else { throw new

il ligalCommandException(..) }

by

31

Chaining interfaces

» Can derive one interface from another
public interface basicMail {.}

public interface blackberryMail
extends basicMail {..}

32

16

WARNING

Java couldn’t care less about what the
interface methods are supposed to do

Who's job is it?

How can it be accomplished?

33

Designing Objects

Secret of OOD is to balance Abstraction
and Encapsulation

34

17

Next Time

* Do homework assignment
* Read chapter 3-3.3

35

18

