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Outline
Feedback
Wrap up last time stuff
Actual Code

More Background material
— Some Theory

— Encapsulation

— Inheritance

— Interface

Class design

Reading
— Chapter 2.5-end, 3.1




Feedback

* Interface questions
— We will cover code examples today
— What if you choose a random class to implement
mouseListener
 If something is confusing...see me after class or
next office hours...each lecture builds on the last

» Voicemail VS other example

— Limited time for class

— Want to make sure everyone understands the book,
this will come into play when we do code review

Feedback

» Explanation of what we did last time (and
today) for UML + voice system

» Please TELL me if you need more time to
copy down something....you might not be
the only one

« Software engineering in general is
abstract, so we cover it on theory, doc,
code levels




Feedback

« UML design requirements on the HWs?
— Will be told which docs you need to generate
 How many diagrams /use cases
necessary?
— Usually we will do specific ones on hw
« Java inheritance, Javadoc
— Will cover today
* Interface/Extend class

Announcement

» For the homework, you should be adding
methods and/or constructors as you see
fit....the assignment is just bare minimum

* Q: Don’t know where to begin.....
* Q: Need programming help....
» A: OH = Office Hours




From last time

* We covered basic UML building blocks
» Started to sketch out UML/CRC of a voice
mail system

— Result in a few basic pieces and relationship
— Will now look at charts

— If you don’t follow a step, please stop me and
ask

UML Class Diagram for Mall
System

* CRC collaborators yield dependencies
= Mai Ibox depends on MessageQueue
= Message doesn't depends on Mai 1box

= Connection depends on Telephone,
Mai ISystem, Message, Mailbox

e Telephone depends on Connection




Dependency Relationships

MailSystem .
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Aggregation Relationships

A mail system has mailboxes
A mailbox has two message queues

A message queue has some number of
messages

A connection has a current mailbox.

A connection has references to a
mailsystem and a telephone
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UML Class Diagram for Voice Mall
System
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Sequence Diagram for Use Case:
Leave a message
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Interpreting this Sequence Diagram

» Each key press results in separate call to dial, but only
one is shown

» Connection wants to get greeting to play

» Each mailbox knows its greeting

» Connection must find mailbox object:

Call findMailbox on MailSystem object

» Parameters are not displayed (e.g. mailbox number)
» Return values are not displayed (e.g. found mailbox)

* Note that connection holds on to that mailbox over
multiple calls
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Sequence Diagram: Retrieve
messages

s age
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Connection State Diagram

connected

hang up

extension dialed

hang up

passcode entered

massage
menu
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More javadoc

For javadoc to work the javadoc style
comments
1. Immediately precede
* Public class

e Public method
e Public item

2. [** */
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Tags

e @param ParamName describtion
e @return describtion of return value
e @throws ExceptionType explanation

e @author yourname
e @version version info
e @see Package.Class
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Running javadoc

javadoc —d doc_dir package name

Near the classes

Can run on single class
— Javadoc something.java

Javadoc -?
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Code

» Will look at all the components of the code
in chapter 2.

19
0l: /**
02: A message left by the caller.
03: */
04: public class Message
05: {
06: /**
07: Construct a Message object.
08: @param messageText the message text
09: */
10: public Message(String messageText)
11: {
12: text = messageText;
13: 3}
14:
15: /**
16: Get the message text.
17: @return message text
18: */
19: public String getText()
20: {
21: return text;
22: }
23:
24: private String text;
25: }
20
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For MessageQueue

36: /**
37: Get the total number of messages in the queue.
38: @return the total number of messages in the queue
39: */
40: public int size(Q)
41: {
42: return queue.size();
43: 3}
44:
45: /**
46: Get message at head.
47: @return message that is at the head of the queue, or null
48: if the queue is empty
49: */
50: public Message peek()
51: {
52: if (queue.size() == 0) return null;
53: else return queue.get(0);
54: 3}
55:
56: private ArraylList<Message> queue;
57: }
21

01: import java.util.Scanner;
02:
03: /**
04: This program tests the mail system. A single phone
05: communicates with the program through

System. in/System.out.
06: */
07: public class MailSystemTester
08: {
09: public static void main(String[] args)
10: {
11: MailSystem system = new MailSystem(MAILBOX_COUNT);
12: Scanner console = new Scanner(System.in);
13: Telephone p = new Telephone(console);
14: Connection ¢ = new Connection(system, p);
15: p-run(c);
16: 3}
17:
18: private static final int MAILBOX_COUNT = 20;
19: } 22
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Violet

« Simple UML system
« Will demo

» Be sure to download and play with it
before hw2

23

Background

» |nterface
* Theory
e Class hierarchies

24
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Interface in Java

Just like a class is a type so it an interface
Used to define a behavior
Can not create an instance

A class can choose to implement an
interface thus in a sense instantiating the
interface

Idea of something.....
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Example

* Music player control
* What would we expect to see supported?

 What does it mean in context?

26
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Interface definition

» Generally set public access

« Contains method signatures
—public boolean i1sActive();
—public void startCount(int count);

* Can also contain defined constants
—public static final Int START = O;
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public interface musicControl {

[

* Will rewind the player n moves
* @param n number of moves to move back
*

puglic void setRewind(int n);
public void fastForward();

public void play(Q);

public void pause();

public void jumpShuffle();

public void jumpForward();

public void jumpBackward();

28
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public interface musicControl {

public static int SHUFFLE =0;

public static int FORWARD = 1;

public static int BACKWARD = 2;

/**

* Will rewind the player n moves

* @param n number of moves to move back
*/

public void setRewind(int n);

public void fastForward();
public void playQ;
public void pauseQ);

public void jump(int n);
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How to use the interface

» Class says “implements ..”

— public class cheaplPOD implements musicPlayer {
* If more than one, use commas to seperate
» Must define all interface methods

* Interface is a type, so that if the class
implements it, | can pass it to a method
which expects the interface type

public void calculate(musicPlayer Xx)

30
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public class cheaplpod impliments
musicPlayer{

public void jump(int j) {

iT( J == musicPlayer_.SHUFFLE) { ..}
else 1f(J == musicPlayer . FORWARD){..}
else 1f(J == musicPlayer . BACKWARD){..}
else { throw new

il ligalCommandException(..) }

by
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Chaining interfaces

» Can derive one interface from another
public interface basicMail {.}

public interface blackberryMail
extends basicMail {..}

32
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WARNING

Java couldn’t care less about what the
interface methods are supposed to do

Who's job is it?

How can it be accomplished?
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Designing Objects

Secret of OOD is to balance Abstraction
and Encapsulation

34
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Next Time

* Do homework assignment
* Read chapter 3-3.3

35
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