
1

1

CS1007: Object Oriented Design
and Programming in Java

Lecture #6
Feb 2

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline
• Feedback
• Wrap up last time stuff
• Actual Code
• More Background material

– Some Theory
– Encapsulation
– Inheritance
– Interface

• Class design

• Reading
– Chapter 2.5-end, 3.1

2

3

Feedback

• Interface questions
– We will cover code examples today
– What if you choose a random class to implement

mouseListener
• If something is confusing…see me after class or

next office hours…each lecture builds on the last
• Voicemail VS other example

– Limited time for class
– Want to make sure everyone understands the book,

this will come into play when we do code review

4

Feedback

• Explanation of what we did last time (and
today) for UML + voice system

• Please TELL me if you need more time to
copy down something….you might not be
the only one

• Software engineering in general is
abstract, so we cover it on theory, doc,
code levels

3

5

Feedback

• UML design requirements on the HWs?
– Will be told which docs you need to generate

• How many diagrams /use cases
necessary?
– Usually we will do specific ones on hw

• Java inheritance, Javadoc
– Will cover today

• Interface/Extend class

6

Announcement

• For the homework, you should be adding
methods and/or constructors as you see
fit….the assignment is just bare minimum

• Q: Don’t know where to begin…..
• Q: Need programming help….
• A: OH = Office Hours

4

7

From last time

• We covered basic UML building blocks
• Started to sketch out UML/CRC of a voice

mail system
– Result in a few basic pieces and relationship
– Will now look at charts
– If you don’t follow a step, please stop me and

ask

8

UML Class Diagram for Mail
System

• CRC collaborators yield dependencies
• Mailbox depends on MessageQueue
• Message doesn't depends on Mailbox
• Connection depends on Telephone,
MailSystem, Message, Mailbox

• Telephone depends on Connection

5

9

Dependency Relationships

10

Aggregation Relationships

• A mail system has mailboxes
• A mailbox has two message queues
• A message queue has some number of

messages
• A connection has a current mailbox.
• A connection has references to a

mailsystem and a telephone

6

11

UML Class Diagram for Voice Mail
System

12

Sequence Diagram for Use Case:
Leave a message

7

13

Interpreting this Sequence Diagram

• Each key press results in separate call to dial, but only
one is shown

• Connection wants to get greeting to play
• Each mailbox knows its greeting
• Connection must find mailbox object:
Call findMailbox on MailSystem object
• Parameters are not displayed (e.g. mailbox number)
• Return values are not displayed (e.g. found mailbox)
• Note that connection holds on to that mailbox over

multiple calls

14

Sequence Diagram: Retrieve
messages

8

15

Connection State Diagram

16

More javadoc

• For javadoc to work the javadoc style
comments

1. Immediately precede
• Public class
• Public method
• Public item

2. /** */

9

17

Tags
• @param ParamName describtion
• @return describtion of return value
• @throws ExceptionType explanation

• @author yourname
• @version version info
• @see Package.Class

18

Running javadoc

• javadoc –d doc_dir package_name

• Near the classes

• Can run on single class
– Javadoc something.java

• Javadoc -?

10

19

Code

• Will look at all the components of the code
in chapter 2.

20

Java Example
01: /**
02: A message left by the caller.
03: */
04: public class Message
05: {
06: /**
07: Construct a Message object.
08: @param messageText the message text
09: */
10: public Message(String messageText)
11: {
12: text = messageText;
13: }
14:
15: /**
16: Get the message text.
17: @return message text
18: */
19: public String getText()
20: {
21: return text;
22: }
23:
24: private String text;
25: }

11

21

For MessageQueue
36: /**
37: Get the total number of messages in the queue.
38: @return the total number of messages in the queue
39: */
40: public int size()
41: {
42: return queue.size();
43: }
44:
45: /**
46: Get message at head.
47: @return message that is at the head of the queue, or null
48: if the queue is empty
49: */
50: public Message peek()
51: {
52: if (queue.size() == 0) return null;
53: else return queue.get(0);
54: }
55:
56: private ArrayList<Message> queue;
57: }

22

Tester
01: import java.util.Scanner;
02:
03: /**
04: This program tests the mail system. A single phone
05: communicates with the program through

System.in/System.out.
06: */
07: public class MailSystemTester
08: {
09: public static void main(String[] args)
10: {
11: MailSystem system = new MailSystem(MAILBOX_COUNT);
12: Scanner console = new Scanner(System.in);
13: Telephone p = new Telephone(console);
14: Connection c = new Connection(system, p);
15: p.run(c);
16: }
17:
18: private static final int MAILBOX_COUNT = 20;
19: }

12

23

Violet

• Simple UML system
• Will demo
• Be sure to download and play with it

before hw2

24

Background

• Interface
• Theory
• Class hierarchies

13

25

Interface in Java

• Just like a class is a type so it an interface
• Used to define a behavior
• Can not create an instance
• A class can choose to implement an

interface thus in a sense instantiating the
interface

• Idea of something…..

26

Example

• Music player control

• What would we expect to see supported?

• What does it mean in context?

14

27

Interface definition

• Generally set public access
• Contains method signatures

– public boolean isActive();
– public void startCount(int count);

• Can also contain defined constants
– public static final int START = 0;

28

public interface musicControl {

/**
* Will rewind the player n moves
* @param n number of moves to move back
*/
public void setRewind(int n);

public void fastForward();

public void play();

public void pause();

public void jumpShuffle();

public void jumpForward();

public void jumpBackward();
}

15

29

public interface musicControl {

public static int SHUFFLE =0;
public static int FORWARD = 1;
public static int BACKWARD = 2;
/**
* Will rewind the player n moves
* @param n number of moves to move back
*/
public void setRewind(int n);

public void fastForward();

public void play();

public void pause();

public void jump(int n);
}

30

How to use the interface

• Class says “implements ..”
– public class cheapIPOD implements musicPlayer {

• If more than one, use commas to seperate
• Must define all interface methods
• Interface is a type, so that if the class

implements it, I can pass it to a method
which expects the interface type

public void calculate(musicPlayer x)

16

31

public class cheapIpod impliments
musicPlayer{
….
public void jump(int j) {

if(j == musicPlayer.SHUFFLE) { …}
else if(j == musicPlayer.FORWARD){..}
else if(j == musicPlayer.BACKWARD){..}
else { throw new
illigalCommandException(…) }
}

32

Chaining interfaces

• Can derive one interface from another
public interface basicMail {…}
public interface blackberryMail
extends basicMail {..}

17

33

WARNING

• Java couldn’t care less about what the
interface methods are supposed to do

• Who’s job is it?

• How can it be accomplished?

34

Designing Objects

• Secret of OOD is to balance Abstraction
and Encapsulation

18

35

Next Time

• Do homework assignment
• Read chapter 3-3.3

