
1

1

CS1007: Object Oriented Design
and Programming in Java

Lecture #5
Jan 31

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• Feedback
• UML
• More UML and OOD

• Reading
– Chapter 2

2

3

Feedback

• If you feel that the pace is too fast, or just
don’t get something, feel free to stop by
office hours

• Will reformat slides online so its easier to
read

• For exception questions
– Please stop by office hours

• How to take notes
– Will be using handouts for code/diagrams

4

Definition: UML

• It is a language
– Syntax & Semantics

• When we model a concept there rules on
how things can be put together and what it
means when they are organized in a
specific way

3

5

Applications

• Software design
• System requirements
• Documenting system process

6

View

• UML provides a view
– Many views of system
– Don’t stuff everything into one huge diagram
– Specific diagram types can express specific

concept
– Sometimes multiple diagrams can apply

• Pick best which you think can express the idea

• We will be covering a simple UML

4

7

Modeling

• What is modeling?
• Means to capture idea, relationship,

decision, and requirements in a well
defined notation.

8

Diagrams

• Visual representation of concepts and
relationships

• Structural Diagrams
• Behavior Diagrams

5

9

Class Diagrams
• Classes and interfaces to capture details about

the entities that make up your system and static
relationships.

• Rectangle with class name
• Optional compartments

– Variables
– Methods (sometimes shorthand)

• Include main Variables and methods

10

Class Diagram

6

11

12

Relationships

• When describe classes, want to diagram
how they are related

• Expressed in different types of connectors
• We covered 3 last time

– Dependency
– Aggregation
– Inheritance

• Will redo, and cover others today

7

13

UML Relationships

14

Dependency

• Weakest relationship
• Something “uses a” another class
• Can assume short lived relationship between

classes

8

15

Association

• Stronger dependency
• Typically relationship over long periods of

time
• Usually linked by not tied (can destroy one

without destroying other).
• Example
• Window and curser
• (straight line)

16

Aggregation

• Stronger than association
• Ownership between classes
• Window has a button

9

17

Multiplicities

• Assume 1
• any number (0 or more): *
• one or more: 1..*
• zero or one: 0..1
• exactly one: 1

18

Composition

• Special form of aggregation
• Contained objects don't exist outside container
• Destroying main kills sub class
• ..is part of ….
• Example: message queues permanently

contained in mail box

10

19

Association II

• Some designers don't like use aggregation
• More general association relationship
• Association can have roles

20

Association II
• Some associations are bidirectional
• Can navigate from either class to the other
• Example: Course has set of students, student has set of

courses
• Some associations are directed
• Navigation is unidirectional
• Example: Message doesn't know about message queue

containing it

11

21

Interface Types

• Interface type describes a set of methods
• No implementation, no state
• Class implements interface if it implements

its methods
• In UML, use stereotype «interface»

22

Reminder

• Use UML to inform, not to impress
• Don't draw a single monster diagram
• Each diagram must have a specific

purpose
• Omit inessential details

12

23

Use cases

• Consists of interactions between the
system and “actors” and their relationships

• Describes what the system does (not how)
• High level sketch of something of value to

any actor

24

NOTE!

• What follows is a highly complex diagram
which took your instructor hours to put
together…..

13

25

ME

26

Use case

ME

Student

Dean

Get Roster

Check Grades

Enter Grades

Verify Grades

Validate User

User

14

27

Reach an Extension case
1. User dials main number of system
2. System speaks prompt

Enter mailbox number followed by #

3. User types extension number
4. System speaks

You have reached mailbox xxxx.
Please leave a message now

28

Leave a Message

1. Caller carries out Reach an Extension
2. Caller speaks message
3. Caller hangs up
4. System places message in mailbox

15

29

Sequence diagram

• Interaction between object over time
• Model several objects in a use case

– Life of objects
– Control points (method execution)

30

Sequence Diagrams II

• Object diagram: class name underlined

16

31

Method operating on object itself

32

Object Creation

17

33

State diagrams

• Describe system behavior
• All possible states of an object as events

occur
• Not always applicable

34

FSA background
• Finite State Automaton
• Model of behavior composed of

– States
– Transitions
– Rules for transitions
– Actions

• Inititial state, current, and end

• Studied in automata theory
– Abstract machines and what they can solve
– Used in AI
– Related to formal language theory

18

35

State Diagram

36

Advantage

• Simple
• Easy to implement
• Given inputs, current state can predict

state transition

19

37

Design Docs
• We will be using Javadoc comments
• Leave methods blank

/**
Adds a message to the end of the new messages.
@param aMessage a message

*/
public void addMessage(Message aMessage)
{
}

• run Javadoc to generate html pages
• Makes a good starting point for code later
• Good for sketching out ideas

38

Summary: UML Building Blocks
• model elements

– (classes, interfaces, components, use cases, etc.)
• Relationships

– (associations, generalization, dependencies, etc.)
• diagrams

– (class diagrams, use case diagrams, interaction diagrams, etc.)

• Simple building blocks are used to create large, complex
structures
– elements, bonds and molecules in chemistry
– components, connectors and circuit boards in hardware

20

39

More examples

• Will continue with components of voice
mail system

40

• We want to sketch out some actions in the
voicemail system

• Get a message
• Change a greeting

• What would both require? What would be
related to that?

21

41

Retrieve Messages
1. Mailbox owner carries out Log in
2. Mailbox owner selects "retrieve messages" menu option
3. System plays message menu:

Press 1 to listen to the current message
Press 2 to delete the current message
Press 3 to save the current message
Press 4 to return to the mailbox menu

4. Mailbox owner selects "listen to current message"
5. System plays current new message, or, if no more new messages, current

old message.
6. Note: Message is played, not removed from queue
7. System plays message menu
8. User selects "delete current message". Message is removed.
9. Continue with step 3.

42

Change Greeting

1. Mailbox owner carries out Log in
2. Mailbox owner selects "change greeting"

menu option
3. Mailbox owner speaks new greeting
4. Mailbox owner presses #
5. System sets new greeting

22

43

Log In
1. Mailbox owner carries out Reach an

Extension
2. Mailbox owner types password and # (Default

password = mailbox number. To change, see
Change the Passcode)

3. System plays mailbox menu:

Enter 1 to retrieve your messages.
Enter 2 to change your passcode.
Enter 3 to change your greeting.

44

Change Passcode

• Mailbox owner carries out Log in
• Mailbox owner selects "change passcode"

menu option
• Mailbox owner dials new passcode
• Mailbox owner presses #
• System sets new passcode

23

45

Practice

• What would the use case to make a move
in the mastermind game look like

46

CRC Cards

• Design method to discover classes

• By sketching out a class and roles and
goals will start to discover other actors

24

47

CRC Cards: Mailbox

48

CRC Cards: MessageQueue

25

49

CRC Cards: MailSystem

50

Telephone

• Who interacts with user?
• Telephone takes button presses, voice

input
• Telephone speaks output to user

26

51

52

Connection

• With whom does Telephone communicate
• With MailSystem?
• What if there are multiple telephones?
• Each connection can be in different state

– (dialing, recording, retrieving messages,...)
• Should mail system keep track of all connection

states?
• Better to give this responsibility to a new class

27

53

Connection

54

Analysis: Leave Message
1. User dials extension. Telephone sends number to Connection

(Add collaborator Telephone to Connection)
2. Connection asks MailSystem to find matching Mailbox
3. Connection asks Mailbox for greeting

(Add responsibility "manage greeting" to Mailbox,
add collaborator Mailbox to Connection)

4. Connection asks Telephone to play greeting
5. User speaks greeting. Telephone asks Connection to record it.

(Add responsibility "record voice input" to Connection)
6. User hangs up. Telephone notifies Connection.
7. Connection constructs Message

(Add card for Message class,
add collaborator Message to Connection)

8. Connection adds Message to Mailbox

28

55

56

29

57

58

30

59

Retrieve Messages
1. User types in passcode. Telephone notifies Connection
2. Connection asks Mailbox to check passcode.

(Add responsibility "manage passcode" to Mailbox)
3. Connection sets current mailbox and asks Telephone to speak menu
4. User selects "retrieve messages". Telephone passes key to Connection
5. Connection asks Telephone to speak menu
6. User selects "listen to current message". Telephone passes key to

Connection
7. Connection gets first message from current mailbox.

(Add "retrieve messages" to responsibility of Mailbox).
Connection asks Telephone to speak message

8. Connection asks Telephone to speak menu
9. User selects "save current message". Telephone passes key to

Connection
10.Connection tells Mailbox to save message

(Modify responsibility of Mailbox to "retrieve,save,delete messages")
11.Connection asks Telephone to speak menu

60

Result of Use Case Analysis

31

61

CRC Summary

• One card per class
• Responsibilities at high level
• Use scenario walkthroughs to fill in cards
• Usually, the first design isn't perfect.

– (You just saw the author's third design of the
mail system)

62

Next Time
• Wrap up UML
• OOP Theory background
• Considerations when choosing and designing

classes

• Will cover theory and code next class
• Finish reading chapter 2 (2-2.5), start 3

