
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #4
Jan 26

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
• Feedback
• Review
• Homework
• Event Driven programming
• Showing off eclipse
• Graphic Programming I
• Graphic Programming II
• Object Oriented Design Process.
• Intro CRC & UML

• Background reading on graphics (basics and concepts)
• Next class Reading chapter 2-2.5

2

Announcements

• Please make sure to note : HW due: Feb
12 at 11pm (electronically).

• TA Announcement: Ohan will hold office
hours from 4:30 to 6:30 today instead of
11-1 on Friday.

Feedback

• Pace

• Graphic programming background

3

Exceptions

• Tool to handle error during program run
– Exception == exceptional event

– Idea: when an error occurs, a method can
create an Object representing the error and
hand it to the run time system

– The runtime system now tries to find someone
to handle the particular error, it uses the call
stack to find a handler

Exception handlers

• Are defined by your catch expression
• If a specific method doesn’t know how to

handle the specific exception, it forwards it
up the stack

• Remember: can have multiple catch
blocks one after other
– Exceptions have a hierarchy, they will be

evaluated from highest to lowest, so the catch
blocks must be in reverse order.

4

The birth of an exception

• You might use a method which might
throw an exception

• You might create a method which creates
and exception

• Your code might trigger an exception

5

InvalidAccountException
public class InvalidAccountException extends Exception {

public InvalidAccountException (String message)
{

super(message);
}

}

Your method
public boolean checkBalance(int account) throws

InvalidAccountException{

if(account==null || account < 1){
throw new InvalidAccountException(“Bad Account
Number”);

}

... ...
}

6

Chaining Exceptions
try {

...

} catch (IOException e) {
throw new SampleException("Other IOException", e);

}

Point

• Can deal with the problem
– Ask user for help
– Figure out what should be done
– Log the error
– Print a trace to debug
– Die (ARGHHHHHH!)

7

Practical Tips

• In a general sense try, catch blocks
impose some overhead to the resulting
code

• Although can enclose all your code in
some try, catch block its not a good idea

• Need to decide at what point, which errors
can occur, and what the appropriate
response will be

Homework

• Playing MasterMind

• G = guesses
• X = choices
• N = range of numbers

8

Programming Models

• Control Flow Programming
– Program which follows control flow changing

course at specific branch points.

• Event Driven Programming
– Program which is driven by events (signal)

and responses in an event loop framework.

• GUI
– Window system which interacts with users

• AWT
– Abstract Windows Toolkit

• SWING
– Updated version of many AWT object with

event driven paradigm design

9

Event and Listeners

• Event Objects
– Objects which trigger a Listener Object
– Example: click on a button

• Listener Object
– Object which react to events
– Example once clicked do something

• Exception Handling!!

Components and Containers

• Can program GUI using a surface and
drawing circles, boxes, etc

• OOD:
• Components

– Individual GUI objects
• Containers

– Object which can hold components

10

Simple example
JFrame easyWindow = new JFrame();
easyWindow.setSize(300,300);
easyWindow.setTitle("This is your first
window");

easyWindow.setDefaultCloseOperation(JFrame.E
XIT_ON_CLOSE);

easyWindow.setVisible(true);

Adding a button

• One component is a button

JButton closeButton = new JButton(“Click to
close”);

easyWindow.add(closeButton);

11

Events

• By default there are a few events
associated with each general window
(container)

• Maximize
• Minimize
• Close
• sizing

Can add events to components
closeButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

if (evt.getSource() instanceof JButton) {
JButton closeButton = (JButton) evt.getSource();
if (closeButton.getBackground() == Color.BLUE) {

closeButton.setBackground(Color.YELLOW);
} else {

closeButton.setBackground(Color.BLUE);
}

}
}
});

12

Alternativly can create a class

public class colorListener
impliments ActionListener {

public void
actionperformed(action...

Adding a second button

• Can add more using the same code, but
then bump into an issue of where do both
buttons go??

• Ideas?!?

13

Layout Managers

• Layout managers are class which handle
how things will be set out in the window

Ending a GUI program

• Think of it as being an infinite loop waiting
for events

• So if you don’t explicitly end the
program……

14

Other GUI stuff

• Much more components
– JLabels
– JRadioButtons
– Dozens more

• Other Containers
– JWindow
– JFrame
– JPanel

Ahead

• Switch gears from programming java

• Object Oriented Design

15

Program Design

• Analysis
• Design
• Implementation

Analysis Phase

• Functional Specification

– Completely defines tasks to be solved
– Free from internal contradictions
– Readable both by domain experts and

software developers
– Reviewable by diverse interested parties
– Testable against reality

16

Design Phase
• Goals

– Identify classes
– Identify behavior of classes
– Identify relationships among classes

• Artifacts

– Textual description of classes and key methods
– Diagrams of class relationships
– Diagrams of important usage scenarios
– State diagrams for objects with rich state

Implementation Phase

• Implement and test classes
• Combine classes into program
• Avoid "big bang" integration
• Prototypes can be very useful

17

Problem 1:

• Design a voicemail system for use in your
typical cellphone.

• How would the requirements look like?
• What would be a typical session?
• What modules are involved?

Identifying Classes in design
• Rule of thumb: Look for nouns in problem

description

• Mailbox
• Message
• User
• Passcode
• Extension
• Menu

18

When defining classes

• Focus on concepts, not implementation

• ????? stores messages
– Lets say a messageQueue

• Don't worry yet how the queue is
implemented

Categories

• Tangible Things
• Agents
• Events and Transactions
• Users and Roles
• Systems
• System interfaces and devices
• Foundational Classes

19

Identifying Responsibilities

• Rule of thumb: Look for verbs in problem
description

• Behavior of MessageQueue:

• Add message to tail
• Remove message from head
• Test whether queue is empty

OO Design

• OO Principle: Every operation is the
responsibility of a single class

• Example:
– Add message to mailbox

• Who is responsible:
– Message or Mailbox?

20

Relationship

• Dependency ("uses")
• Aggregation ("has")
• Inheritance ("is")

Dependancy

• C depends on D: Method of C
manipulates objects of D

Example: Mailbox depends on Message
• If C doesn't use D, then C can be

developed without knowing about D

21

Java defintions

• When class X extends Y
– X is a subclass
– Y is a superclass

• When interface A extends Interface B
– A is a subinterface
– B is a superinterface

• When G implements interface B
– G is an implementation of B
– B is an interface of class G

Independent operations
• Minimize dependency:

– reduce having to relay on anything set in stone

• Example: Replace
void print() // prints to System.out
• with

String getText() // can print anywhere

• Removes dependence on System, PrintStream

22

Aggregation

• Object of a class contains objects of
another class

• Example: MessageQueue aggregates
Messages

• Example: Mailbox aggregates
MessageQueue

• Implemented through instance fields

Relationships
• 1 : 1 or 1 : 0...1 relationship:

public class Mailbox
{

. . .
private Greeting myGreeting;

}

• 1 : n relationship:

public class MessageQueue
{

. . .
private ArrayList<Message> elements;

}

23

Inheritance
• More general class = superclass
• More specialized class = subclass
• Subclass supports all method interfaces of

superclass (but implementations may differ)
• Subclass may have added methods, added state
• Subclass inherits from superclass
• Example:

– ForwardedMessage inherits from Message
– Greeting does not inherit from Message (Can't store

greetings in mailbox)

Use Cases

• Analysis technique
• Each use case focuses on a specific scenario
• Use case = sequence of actions
• Action = interaction between actor and computer

system
• Each action yields a result
• Each result has a value to one of the actors
• Use variations for exceptional situations

24

Use case: Leave a Message

1. Caller dials main number of voice mail system
2. System speaks prompt

• Enter mailbox number followed by #

3. User types extension number
4. System speaks

• You have reached mailbox xxxx. Please leave a message now

5. Caller speaks message
6. Caller hangs up
7. System places message in mailbox

Variations

• user enters invalid extension number
– What do you do?
– Who does it?

• What if user hangs up instead of using
message?

• How many attempts at password?

25

CRC Cards

• CRC = Classes, Responsibilities,
Collaborators

• Use an index card for each class
• Class name on top of card
• Responsibilities on left
• Collaborators on right

CRC

MailBox

MessageQueue
•Manage Passcode

•Manage Greeting

•Manage New/saved
messages

• Responsibilities should
be high level

• 1 - 3 responsibilities per
card

• Collaborators are for
the class, not for each
responsibility

26

Example

• Use case: "Leave a message"
• Caller connects to voice mail system
• Caller dials extension number
• "Someone" must locate mailbox
• Neither Mailbox nor Message can do this
• New class: MailSystem
• Responsibility: manage mailboxes

UML

• UML = Unified Modeling Language
• Many diagram types
• We'll use three types:

– Class Diagrams
– Sequence Diagrams
– State Diagrams

27

UML

• Why do we model?
– Provide structure for problem solving
– Experiment to explore multiple solutions
– Furnish abstractions to manage complexity
– Decrease development costs
– Manage the risk of mistakes

• Graphical Approach
– Picture is worth 1000 words

UML Building Blocks
• model elements (classes, interfaces, components, use

cases, etc.)
• relationships (associations, generalization,

dependencies, etc.)
• diagrams (class diagrams, use case diagrams,

interaction diagrams, etc.)

• Simple building blocks are used to create large, complex
structures
– elements, bonds and molecules in chemistry
– components, connectors and circuit boards in hardware

28

Next time

• Read
• Make sure sketch out the homework and

have a rough outline of what you need to
do

• Download Violet (UML designer) and try to
play with it.

