CS1007: Object Oriented Design
and Programming in Java

Lecture #4
Jan 26

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Feedback

Review

Homework

Event Driven programming
Showing off eclipse

Graphic Programming |

Graphic Programming Il

Object Oriented Design Process.
Intro CRC & UML

Background reading on graphics (basics and concepts)
Next class Reading chapter 2-2.5

Announcements

* Please make sure to note : HW due: Feb
12 at 11pm (electronically).

* TA Announcement: Ohan will hold office
hours from 4:30 to 6:30 today instead of
11-1 on Friday.

Feedback

e Pace

» Graphic programming background

Exceptions

* Tool to handle error during program run
— Exception == exceptional event

— Idea: when an error occurs, a method can
create an Object representing the error and
hand it to the run time system

— The runtime system now tries to find someone
to handle the particular error, it uses the call
stack to find a handler

Exception handlers

» Are defined by your catch expression

* |f a specific method doesn’t know how to
handle the specific exception, it forwards it
up the stack

« Remember: can have multiple catch
blocks one after other
— Exceptions have a hierarchy, they will be

evaluated from highest to lowest, so the catch
blocks must be in reverse order.

Method where
Throws exception =~ | @rror occurred

Looking for
appropriate handler
Method without an
Forwards exception ~"| exception handler
Looking for

appropriate handler

Method that has an

Catches some | axeaption handler
other exception

main

The birth of an exception

* You might use a method which might
throw an exception

* You might create a method which creates
and exception

» Your code might trigger an exception

InvalidAccountException

public class InvalidAccountException extends Exception {

public InvalidAccountException (String message)

{
}

super(message) ;

Your method

public boolean checkBalance(int account) throws
Inval idAccountException{

if(account==null |] account < 1){

throw new InvalidAccountException(“Bad Account
Number’”);

Chaining Exceptions

try {

} catch (10Exception e) {
throw new SampleException(*'Other I10Exception', €);

}

Point

» Can deal with the problem
— Ask user for help
— Figure out what should be done
— Log the error
— Print a trace to debug
— Die (ARGHHHHHH!)

Practical Tips

* In a general sense try, catch blocks
impose some overhead to the resulting
code

» Although can enclose all your code in
some try, catch block its not a good idea

* Need to decide at what point, which errors
can occur, and what the appropriate
response will be

Homework

» Playing MasterMind

G = guesses
« X =choices
* N =range of numbers

Programming Models

« Control Flow Programming

— Program which follows control flow changing
course at specific branch points.

e Event Driven Programming

— Program which is driven by events (signal)
and responses in an event loop framework.

 GUI

— Window system which interacts with users
o AWT

— Abstract Windows Toolkit
« SWING

— Updated version of many AWT object with
event driven paradigm design

Event and Listeners

« Event Objects
— Objects which trigger a Listener Object
— Example: click on a button
 Listener Object
— Object which react to events
— Example once clicked do something

» Exception Handling!!

Components and Containers

Can program GUI using a surface and
drawing circles, boxes, etc

« OOD:

Components
— Individual GUI objects

Containers
— Object which can hold components

Simple example

JFrame easyWindow = new JFrame();
easyWindow.setSize(300,300);

easyWindow.setTitle(""This is your first
window™) ;

easyWindow.setDefaultCloseOperation(JFrame.E
XIT_ON_CLOSE);

easyWindow.setVisible(true);

Adding a button

* One component is a button

JButton closeButton = new JButton(*“Click to
close™);

easyWindow.add(closeButton);

10

Events

By default there are a few events
associated with each general window
(container)

Maximize
Minimize
Close
sizing

Can add events to components

closeButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {

if (evt.getSource() instanceof JButton) {

JButton closeButton = (JButton) evt.getSource();

if (closeButton.getBackground() == Color.BLUE) {
closeButton.setBackground(Color.YELLOW);

} else {
closeButton.setBackground(Color.BLUE);
}
}
}
)

11

Alternativly can create a class

public class colorListener
impliments ActionListener {

public void
actionperformed(action. ..

Adding a second button

« Can add more using the same code, but
then bump into an issue of where do both
buttons go??

e |deas?!?

12

Layout Managers

« Layout managers are class which handle
how things will be set out in the window

Ending a GUI program

» Think of it as being an infinite loop waiting
for events

« So if you don’t explicitly end the
program......

13

Other GUI stuff

* Much more components
— JLabels
— JRadioButtons
— Dozens more

e Other Containers
—JWindow
— JFrame
— JPanel

Ahead

» Switch gears from programming java

» Object Oriented Design

14

Program Design

» Analysis
* Design
* Implementation

Analysis Phase

» Functional Specification

— Completely defines tasks to be solved
— Free from internal contradictions

— Readable both by domain experts and
software developers

— Reviewable by diverse interested parties
— Testable against reality

15

Design Phase

* Goals

— ldentify classes
— ldentify behavior of classes
— Identify relationships among classes

* Artifacts

Textual description of classes and key methods
Diagrams of class relationships

Diagrams of important usage scenarios

State diagrams for objects with rich state

Implementation Phase

Implement and test classes
Combine classes into program
Avoid "big bang" integration
Prototypes can be very useful

16

Problem 1:

Design a voicemail system for use in your
typical cellphone.

How would the requirements look like?
What would be a typical session?
What modules are involved?

|ldentifying Classes in design

Rule of thumb: Look for nouns in problem
description

Mailbox
Message
User
Passcode
Extension
Menu

17

When defining classes

» Focus on concepts, not implementation

— Lets say a messageQueue

» Don't worry yet how the queue is
implemented

Categories

» Tangible Things

* Agents

» Events and Transactions

» Users and Roles

e Systems

« System interfaces and devices
* Foundational Classes

18

Identifying Responsibilities

Rule of thumb: Look for verbs in problem
description

Behavior of MessageQueue:
Add message to talil

Remove message from head
Test whether queue is empty

OO Design

OO Principle: Every operation is the
responsibility of a single class

Example:

— Add message to mailbox
Who is responsible:

— Message or Mailbox?

19

Relationship

« Dependency ("uses")
« Aggregation ("has")
« Inheritance ("is")

Dependancy

 C depends on D: Method of C
manipulates objects of D

Example: Mailbox depends on Message

e If C doesn't use D, then C can be
developed without knowing about D

20

Java defintions

 When class X extends Y
— X is a subclass
—Y is a superclass
 When interface A extends Interface B
— Ais a subinterface
— B is a superinterface
 When G implements interface B
— G is an implementation of B
— B is an interface of class G

Independent operations

* Minimize dependency:
— reduce having to relay on anything set in stone

» Example: Replace
void print() // prints to System.out
* with

String getText() // can print anywhere

* Removes dependence on System, PrintStream

21

Aggregation

» Object of a class contains objects of
another class

« Example: MessageQueue aggregates
Messages

« Example: Mailbox aggregates
MessageQueue

» Implemented through instance fields

Relationships

e 1:1or1:0..1 relationship:

public class Mailbox

{

private Greeting myGreeting;

}

e 1:nrelationship:

public class MessageQueue

{

private ArrayList<Message> elements;

}

22

Inheritance

More general class = superclass
More specialized class = subclass

Subclass supports all method interfaces of
superclass (but implementations may differ)

Subclass may have added methods, added state
Subclass inherits from superclass

Example:
— ForwardedMessage inherits from Message

— Greeting does not inherit from Message (Can't store
greetings in mailbox)

Use Cases

Analysis technique
Each use case focuses on a specific scenario
Use case = sequence of actions

Action = interaction between actor and computer
system

Each action yields a result
Each result has a value to one of the actors
Use variations for exceptional situations

23

o g

Use case: Leave a Message

Caller dials main number of voice mail system
System speaks prompt

Enter mailbox number followed by #

User types extension number
System speaks

You have reached mailbox xxxx. Please leave a message now
Caller speaks message

Caller hangs up
System places message in mailbox

Variations

user enters invalid extension number
— What do you do?

—Who does it?

What if user hangs up instead of using
message?

How many attempts at password?

24

CRC Cards

CRC = Classes, Responsibilities,
Collaborators

Use an index card for each class

Class name

on top of card

Responsibilities on left
Collaborators on right

CRC

« Responsibilities should

MailBox be high level

*Manage Passcode
*Manage Greeting

*Manage New/saved
messages

« 1 - 3 responsibilities per
card

MessageQueue « Collaborators are for
the class, not for each
responsibility

25

Example

» Use case: "Leave a message"

 Caller connects to voice mail system

» Caller dials extension number

* "Someone" must locate mailbox

* Neither Mailbox nor Message can do this
* New class: MailSystem

» Responsibility: manage mailboxes

UML

 UML = Unified Modeling Language
« Many diagram types
« We'll use three types:

— Class Diagrams

— Sequence Diagrams

— State Diagrams

26

UML

 Why do we model?
— Provide structure for problem solving
— Experiment to explore multiple solutions
— Furnish abstractions to manage complexity
— Decrease development costs
— Manage the risk of mistakes

» Graphical Approach
— Picture is worth 1000 words

UML Building Blocks

* model elements (classes, interfaces, components, use
cases, etc.)

* relationships (associations, generalization,
dependencies, etc.)

» diagrams (class diagrams, use case diagrams,
interaction diagrams, etc.)

» Simple building blocks are used to create large, complex
structures
— elements, bonds and molecules in chemistry
— components, connectors and circuit boards in hardware

27

Next time

 Read

» Make sure sketch out the homework and
have a rough outline of what you need to
do

* Download Violet (UML designer) and try to
play with it.

