Outline

* Feedback
« Background
CS1007: Object Oriented Design - ey
and Programming in Java - Static

— Method Overloading
— Basic classes

— Constructors
Lecture #3 — Useful tools
T 1/24 ~ Exception handling
— File handles
Shlomo Hershkop

shlomo@cs.columbia.edu

* Reading: Chapter 1, and any relevant background
reading

Feedback Announcements

* More clarification on THIS « Homework 1 out by next class

— Start early
 Practical java examples — If you are having problems...you probably
— Limited now, since we need to cover have not seen HWO
background material, but will be doing — Will be doing snippets in class
complex examples during class

* Practice homework online

Wil K luti labl — Basic idea will be to create a multi class
— Will make solutions available project and have fun.

Office hours

. |\/|y
—T/Th 1-2pm, 4-4:30pm
— By appointment

¢ Ohan
—T11-1or12-2
—Fr12-2

Announcements |

« Slides will be on website within 24hrs after

class

* Privilege
» Don’t want to see drop in attendance,
being here allows a discussion to take

place

This

public class student{
String name;

Date recordStart;

int idNumber;

public void setName(String name){
this.name = name;

}

Class objects

Represents an idea/concept/construct

Field variables
Constructors

— Default

Public methods
— Accessors
— Mutators

Private methods

Constructor

» A constructor is a method that gets called when an object is created
using new.

We can use the constructor to initialize the fields of the object.

A constructor can have as many parameters as necessary, but can
not have a return type.

public class Account
private int id;

public Account(int id){
this.id = id;

3

3

Default Constructor

+ If we don't define a constructor the default
constructor with not parameters will be created.

¢ So we can say:
Account m = new Account();

* Like other methods, the constructor can also be
overloaded (more on this later)

» Can call one constuctor from another
— this(argument list);
— Must be the first statement in the method

Methods

« Methods are defined by their signatures
— permissions
— Return values
— Argument values
— modifiers

public void foo()
public int foo()

Method Overloading

* We can define two methods with the same

name, as long as they have different
signatures

— Different input parameters
or/and

— Different return values

Java will know which one to use

Exceptions

Object that represents an unusual event or
an error

Attempt to divide by zero
Array out of bounds
Null reference

Exception Handling

« Example: NullPointerException

String name = null;
int n = name.length(); // ERROR

« Cannot apply a method to null reference
< Virtual machine throws exception
« Unless there is a handler, program exits with stack trace

Exception in thread "main"” java.lang.NullPointerException
at Student.setname(Student.java:15)
at StudentTest.main(StudentTest.java:20)

Checked and Unchecked
Exceptions

Compiler tracks only checked exceptions
NullPointerException is not checked
IOException is checked

Generally, checked exceptions are thrown for
reasons beyond the programmer's control
Two approaches for dealing with checked
exceptions

— Declare the exception in the method header
(preferred)

— Catch the exception

Declaring Checked Exceptions

Example: Opening a file may throw FileNotFoundException:

public void read(String filename) throws
FileNotFoundException

FileReader reader = new FileReader(filename);

Can declare multiple exceptions

public void read(String filename)

throws 10Exception, ClassNotFoundException
public static void main(String[] args)
throws 10Exception, ClassNotFoundException

Catching Exceptions

try
code that might throw an 10Exception
catch (10Exception exception)

take corrective action

3

Corrective action can be:
— Notify user of error and offer to read another file
— Log error in error report file
— In student programs: print stack trace and exit

exception.printStackTrace();
System.exit(1);

The Finally Clause

« Will ALWAYS execute code block
— Even if return statement in try block
Cleanup needs to occur during normal and exceptional processing
« Example: Close a file

FileReader reader = null;
try
{

reader = new FileReader(name);

} catch.....
finally
{

if (reader != null) reader.close();

}

Java packages

* Collection of similar classes

« Package names are dot-separated
identifier sequences

java.util

javax.swing
com.sun.misc
edu.columbia.cs.robotics

Packages

» Unique package names: start with reverse
domain name

» Corresponds to directory structure
— Must match directory structure

» package statement to top of file

* Class without package name is in "default
package*

» Full name of class = package name + class
name

java.util.String

Importing Packages

» Tedious to use full class names
 import allows you to use short class name

import java.util.Scanner;
Scanner a; // i.e. java.util.Scanner

e Can import all classes from a package
import java.util.*;

Arrays

 Ordered list of objects can be organized in
an array
* Array properties
— Capacity
— Size
— Can be treated as a single object (to an
extent)

Arrays

< Arrays can store objects of any type, but
their length is fixed

int[] numbers = new int[10];

 Array variable is a reference J,

ref

Arrays
« Array access with [] operator:

int n = numbersi];
« length member yields number of elements

for (inti = 0; i < numbers.length; i++)

» Or use "for each" loop
for (int n : numbers)

Command Line Arguments

public static void main(String[] args)

e args, is an array of string.
* The elements of args are the command line
arguments using in running this class.

Java testProgram —t —Moo=boo out.txt
0: “-t’

1: “-Moo=boo”

2: “out.txt’

Arrays

» Can have array of length 0; not the same
as null:

* numbers = new int[0];

» Multidimensional array

Two dimensional arrays

* You can create an array of any
object, including arrays

« int[][] table = new int[10][20];

« int t = table[i][j];

* An array of an array is a two
dimensional array

public class TicTacToe{
public static final int EMPTY = O;
public static final int x 1;
public static final int y 2;

private int[][] board =
{ {EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY}

}

Two dimensions

* You can also initialize the inner array as a
separate call.

« Doesn’t have to be congruous memory locations

int [J[]example = new int[5][];
for (int 1=0;i<5;i++){
example[i] = new int[i+1];

}

Multiple dimensions

No reason cant create 4,5,6 dimension
arrays

Gets hard to manage

Think about another way of representing
the data

Often creating an object is a better
approach

Arrays further

* Need to explicitly copy contents of arrays

ArrayList
e Vector

Full object versions of arrays

« Capacity can grow over time

Scope

Scope refers to where java programming
objects variables/methods/classes can be
accessed.

Local
Global
Package
Universal

Variables

* Variables declared within a method are local to
that method
— Local scope

» Variables declared within a class, are called field
variables

— Class wide scope
« Including subclasses

— Package wide scope

+ Local variable can have the same name as field
variables
— Use this to disambiguate

Instantiated vs static

» When you define a method in a class,
every instance of the class has its own

copy.

« static methods allows one copy to be
accessed by all instances

-So...... what parts of the class should it be
able to access?

Static Fields

Shared among all instances of a class
Example: shared random number generator

public class Greeter

{

private static Random generator;

b
« Example: shared constants

public class Math

{

public static final double Pl = 3.14159265358979323846;

Static Methods

Don't operate on objects
Example: Math.sqrt
Example: factory method
public static Greeter getRandomlnstance()
if (generator.nextBoolean()) // note: generator is static field
return new Greeter("Mars');
else
return new Greeter("Venus");
Invoke through class:

Greeter g = Greeter.getRandominstance();

Static fields and methods should be rare in OO programs

Pass around

« Can in theory use static variables to pass
around values between class instances

When is this good?
e Why?
e Why Not?

main

» The main method is declared public, static
and void.

» Because it is static we often need to
create an instance of the class inside its
own main.

e Why?

main

« Every class can have a main method. If
you five classes, with each one having a
main, you need to tell java which one to
run...

¢ How is this done?

 Can also use individual mains as testing
areas, will be ignored when not run

Default values

» Should be aware if you forget to set values

» Compiler/IDE will let you know if you forgot
to set values (warning)

10

Default Values

» By Default java assigns the following
values:

* boolean false
e char 0

* byte, int 0

* float +0.0F
* double +0.0

* reference null

Strings

» Sequence of Unicode characters
— (Technically, code units in UTF-16 encoding)
= length method yields number of characters

* " is the empty string of length O,
different from nul 1
» Special class in Java

— Assigning a string literal to a string reference creates
an instance!

» charAt method yields characters:
char c¢c = s.charAt(i);

String I

« substring method yields substrings:
"Hello".substring(1, 3) is "el”

* Use equals to compare strings
if (greeting.equals('Hello™))
= == only tests whether the object

references are identical:
iT ("Hello".substring(1, 3) == "el') ... // NO!

String concatenation

« + operator concatenates strings:

« "Hello, " + name

« If one argument of + is a string, the other is converted into a string:
intn=17;

String greeting = "Hello, " + n;

1 yields "Hello, 7"

« toString method is applied to objects

Date now = new Date();

String greeting = "Hello, " + now;

1l concatenates now.toString()

I yields "Hello, Wed Jan 17 16:57:18 PST 2001"

11

Converting Strings to Numbers

» Use static methods
- WHY???

Integer.parseint

Double.parseDouble

* Example:

String input = "7";

int n = Integer.parselnt(input);
/I yields integer 7

* NOTE:
If string doesn't contain a number, throws a
NumberFormatException(unchecked)

Reading Input through scanners

» Construct Scanner from input stream (e.g.

System.in)

e Scanner in = new Scanner(System.in)
 nextint, nextDouble reads next int or double

e int n = in.nextint();

» hasNextInt, hasNextDouble test whether next

token is a number

* next reads next string (delimited by whitespace)
* nextLine reads next line

Example
01: import java.util_Scanner;
02:
03: public class InputTester
04:
05: public static void main(String[] args)
06: {
07: Scanner in = new Scanner(System.in);
08: System.out.print(‘"How old are you?");
09: int age = in.nextIntQ);
10: age++;
11: System.out.printin("Next year, you"ll be "
+ age);
12: 3
13: }

Useful classes

 Arraylists

— Overview of generics

 Linkedlists
* |terators

12

The ArrayList<E> class

» Generic class: ArrayList<E> collects objects of
type E

¢ E cannot be a primitive type

« add appends to the end

ArrayList<String> countries = new
ArrayList<String>(Q);
countries.add(""'Belgium'™);
countries.add("ltaly™);
countries.add(*'Thailand™);

= get gets an element; no need to cast to correct type:
String country = countries.get(i);

« set sets an element

countries.set(1, "France");

* size method yields number of elements

for (inti = 0; i < countries.size(); i++) . . .

¢ Or use "for each" loop

for (String country : countries) . .

« Can insert and remove elements in the
middle

countries.add(1, "Germany");
countries.remove(0);

* Not efficient--use linked lists if needed
frequently

Linked List

¢ What?
— Efficient insertion and removal
« add appends to the end

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");

countries.add("ltaly");

countries.add("Thailand");

« Use Listiterators to edit in the middle
— lterator points between list elements

13

List Iterators

* next retrieves element and advances iterator
Listlterator<String> iterator = countries.listlterator();
while (iterator.hasNext())

{

String country = iterator.next();

« Or use "for each" loop:

« for (String country : countries)

« add adds element before iterator position

* remove removes element returned by last call to next

File handling

» Example3.java

Graphic programming

* Will have some basic review next class
« Will teach as we go

14

