
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #22
Apr 11

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Multi threaded models:
• Sharing resources
• Sending signal
• Threaded model
• Java code
• More java code

• Reading: Chapter 9-9.2



2

Feedback

• Thursday will be small class on graphic 
programming tips and open ended programming 
help from TA’s 
– Will make sure you are at least started on the 

assignment
– Will have some code for you to use if you need
– Double points if you stump them ☺
– Also: please submit via email (to me) a screenshot of 

your Othello game GUI, we will have a vote in the last 
class for best of show.

Homework 

• How are you testing for next move ?



3

Homework 

• How are you saving the game ?

Threading 

• Program which run on your system are 
scheduled in such a way that they you are 
given the impression that it is always being 
executed

• In truth there is a system called the 
scheduler which decides which program 
gets to run

• No guarantees



4

• We discussed some simple scheduling 
algorithms last class

• So the resource gets shared between 
programs running at the same time

• Is this always good?

• Works for something like CPU

• What If the resource is a printer ??



5

• So assume your cpu is being scheduled 
between programs, how can one program 
tell the scheduler it is done

• Or allow the scheduler to reschedule 
someone's slot in middle of running

Signaling 

• Need system to allow processes to signal 
system when done, or problems 

• Anyone hear of interrupts ?? IRQ



6

Process 

• Your running program
• Has memory space associated with it
• Variables
• State

– Processor state
– Memory state

• Set of resources
• Permission level

Threads vs processes

• If you want to run multiple process 
expensive to switch context

• Java allows you to launch multiple threads 
of execution
– Processes don’t share memory space
– Really all the threads are under java’s 

execution process (some exceptions)



7

What is a thread

• So what exactly is a thread?

• Think of it as mini program within your 
program

• Exciting thing: can run multiple mini 
programs inside your program at the same 
time

Sequential program



8

Sequential instructions

• Pro:
– Easier to read
– When things go wrong, easier to pinpoint error
– easier to debug

• Con: 
– May have long waits at points

• I/O bound problem

– Something important might get lost
– Not as cool ☺
– Might break your computer

Threaded instructions

• Can get more done at the same time
• More efficient
• Harder to debug, as specific condition 

(race) might be hard to replicate

• Chapter 9 of book ☺



9

Life of a thread

• Not what you think!

Stages 

1. New
2. Runnable
3. Blocked
4. Dead 



10

New stage

• So create the thread using some code

• Will do nothing so far
– Maybe crash



11

runnable

• Your thread is running

• Start with call to start() method

Not runnable

• Going to sleep ☺
• Wait for something specific to happen

– Getting a lock
– Waiting for some other process to get results
– etc

• Blocking and waiting for I/O



12

Going back to running

• Once a thread isnt running
• Scheduler will choose a thread

• Based on priority
• Based on schedule

Dead stage

• Run method terminates 

– normally



13

Idea 
• Have some set of java instructions you want to 

run
• Put it in a thread
• Start the thread

• Example: Number X….is it prime
• Algorithm 1 - will find answer in 100 seconds
• Algorithm 2 - works between 50 - 500 seconds

– Instead of having to choose one, just run both at the 
same time ☺

Nice thread

• A nice thread will make place for others to 
run by not hogging CPU

• Implemented on Linux OS

• Called yield in java
– Will only apply if same or higher priority 

threads waiting to run



14

sleeping

• Not during class ☺

• Will allow itself to be put in the background 
so other threads can run

• Thread.sleep(milliseconds)
– Will sleep for X milliseconds
– Can be interrupts with exception/signal
– Need to think about how to handle that

Coding 

• 2 ways to code threads in java
• Extend Thread

– Override run method
• Implement runnable

• We will now walk through both



15

Problem 

• Cant decide what you want to major in

• Will run 2 threads, which ever finishes first 
will choose 

• What do you think ?

public class SimpleThread extends Thread {
public SimpleThread(String str) {

super(str);
}

public void run() {
for (int i = 0; i < 10; i++) {

System.out.println(i + getName());
try {

sleep((long)(Math.random() * 1000));
} catch (InterruptedException e) {}

}
System.out.println("DONE! “ + getName());

}
}



16

public class TwoThreadsTest {
public static void main (String[] args) {
new SimpleThread(“Computer Science").start();
new SimpleThread(“Engineering").start();
}

}

• Other option to implement runnable
• Provide a class that implements the 

Runnable interface and therefore 
implements the run method

• In this case, a Runnable object provides 
the run method to the thread

• Code example



17

Testing state

• Thread.getState()

• NEW
• RUNNABLE
• BLOCKED
• WAITING
• TIMED_WAITING
• TERMINATED

isAlive()

• True
– Runnable
– not runnable

• False
– New state
– terminated



18

Priority 

• In addition to state, each thread has a priority 
associated with it

• Can change the threads priority manually
• No guarantee on anything

• Range:
– MIN_PRIORITY
– MAX_PRIORITY

Question 

• Initially Thread class had stop() method to 
stop a running thread

• It has been removed…any ideas why ?

• So how can we stop a running thread ?



19

Signaling threads

• X.interrupt();

• Calling sleep will trigger an interrup
exception

• Can manually look it up
– Thread.currentThread().inInterrupted()

Warning 

• Don’t blindly ignore interrupts

• Deal with them

• Can also set interrupts after catching if 
want to deal with it elsewhere in your code



20

Race condition

• One more new thing to worry about (unlike 
sequential instructions)

• When 2 threads simultaneously try to 
change a single object, leaving the 
resulting state undefined

• Example

• Any ideas of what to do ?



21

Airline bathroom

• Imagine the resource is an airline 
bathroom

• Only one thread at a time
• When want to use it:

– If free …grab
– Else wait (FIFO)

Locks 

• Need a system for locking down a 
resource

• Don’t want anyone writing to the file while 
you are reading it

• Avoid inconsistency!!



22

ReentrantLock()

• Objects you create

• Call lock at the beginning of a block

• Make sure to call unlock at end

• Or use the finally after a catch block

• Deadlock problem

• Can go to sleep right after a check

• When come back wont be true anymore



23

Synchronized keyword

• Allow you to create a mutually excusive 
lock on a block of code

• Any part of the program which want to 
enter this ‘zone’ needs to aquire the lock

• Else wait till its free
• Some overhead

– Leave out of loop code

Thursday 

• Please start working on the homework

• TAs will present some graphic 
programming tips and help you with the 
homework


