
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #20
April 4

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Some brief background to help with 
homework

• Java beans
• Some interesting programming challenges
• Next time: 

– Applet programming
– Multi process/multi threaded environments

• Reading for next time: 9-9.2



2

Announcement 
• Next week Thursday, is PASSOVER
• Choice:

– Review/overview class by TA
– Day off to the work on assignment
– Bring your laptop to class day and TAs will help with 

specific programming ideas
– Sleep

• Due to the holiday, I will have makeup office 
hours TBD

• The Ta’s will be around more often to help with 
the hw2

Homework help

• Idea: hopefully you’ve started on the 
homework already

• Will try to help you out to understand some 
fundamental ideas

• Please come see me if you are getting 
stuck



3

Pitfalls 

• Be careful to understand how graphics 
and graphic objects are created and 
treated in JAVA

• Problem: everything works great … except 

redraw

• Problems with redraw
– Update java 1.0.5.0.4 -> 1.0.5.0.6

• Understand how things hook to each other

• Lets look at a simple tictacgame



4

logic

• Everything works great, except when you 
play a certain move after 11am on the 
third Tuesday of the month

Jar files

• Jar files are the equivalent of a zip file with 
some added information for allowing 
groups of classes to be bundled together

• Can be used to extract and compress files
• Use of Manifest file to give instructions to 

the system
– Which class is main
– Specify a path of the outside classes
– metadata



5

Manifest file example
Manifest-Version: 1.0
Main-Class: metdemo.winGui
Class-Path: . lib/derby.jar lib/mail.jar

Jar compression

• Jar cvfm some.jar Manifest.txt path/*.class



6

Jar decompression

• Jar –xvf some.jar

• Can also only list the contents without 
extracting

Advantages of Jar files

• One file to send to someone
• Can be treated almost like executable if 

done right
• Can sign itself to guarantee its authenticity



7

Question of the day

• How would you program a maze game ?

Maze 

• How do you represent the game ?

• How would you solve the maze?

• What is the fastest/shortest way to solve 
the maze?



8

From object oriented view

• MazeGame mzg = new 
MazeGame(40,40);

• //assume start is 0,0 end is max,max

• msg.getOptions(x,y);

• Write a solution …

Beyond Objects

• Object represent a single concept (usually)
• Sometimes hard to reuse in complex 

behavior
• Would like an idea of a Object, a few 

object, which we can add some behavior 
necessary to accomplish a specific task



9

Take away lesson

• Question: 
• If I don’t plan on lots of programming, why 

should I care about this?

• Programming is a way of expressing an idea of 
an algorithm

• Allows you to solve much larger sets of 
problems

• More interesting sets of problems (I’ve been 
introducing them slowly)

• Will allow you to cut through marketing jargon
• Read other peoples code
• Understand or misunderstand CPP templates



10

OO

• That is not a pair of glasses up there

• We keep stressing the main idea of Object 
oriented programming approach

• How do you translate these ideas to non 
programmers

• Anyone hear of visual basic??

• Successful model: Visual Basic controls
– calendar
– graph
– database
– link to robot or instrument



11

Bottom line

• Anyone can now write a virus ☺

Component model
• Anyone have an ipod ?

• How do you plug in headphones?

• How do you plug it into your home entertainment 
system?

• Any of those steps need a hammer and 
screwdriver ?



12

Idea of Components

• More functionality than a single class
• Reuse and customize in multiple contexts
• "Plug components together" to form 

applications

• Components composed into program 
inside builder environment

• Target all users, not just programmers

Java beans

• A reusable piece of code which satisfies 
the requirements of the JavaBeans 
framework that can be manipulated by an 
IDE designed to work with JavaBeans



13

Some requirements 
1. Consistency

rules governing the consistency of name conventions 
(methods and types of methods)

2. Event Handling Model
SWT and Swing were implemented in this framework

3. Persistence
can extend values beyond single session

4. Introspection
ability to find which method/args are taken

5. Builder Support 
IDE

Builder support

• JavaBeans should be able to be created 
and programmed by anyone who can use 
a mouse

• Think of video game programming 
framework



14



15

Property sheet



16

Façade pattern

• We have a bunch of classes working 
together

• Want to allow easy use
• Want to change things in the background 

without changing everything

• Sounds familiar ??

Façade class

• Bean usually composed of multiple 
classes

• One class nominated as facade class
• Clients use only facade class methods



17

How JAVABEAN does it

• Define a facade class that exposes all 
capabilities of the subsystem as methods

• The facade methods delegate requests to 
the subsystem classes

• The subsystem classes do not know about 
the facade class



18

Bean Properties

• Property = value that you can get and/or 
set

• Most properties are get-and-set
• Can also have get-only and set-only
• Property not the same as instance field
• Setter can set fields, then call repaint
• Getter can query database

Syntax

• Not Java :-(
• C#, JavaScript, Visual Basic
• b.propertyName = value

– calls setter in background
• variable = b.propertyName

– calls property getter



19

Conventions
• property = pair of methods
public X getPropertyName()
public void setPropertyName(X newValue)
• Replace propertyName with actual name
(e.g. getColor/setColor)
• Exception for boolean properties:
public boolean isPropertyName()
• Decapitalization hokus-pokus:
getColor -> color
getURL -> URL

Builder tool



20

Packaging 

• Compile bean classes
Ch7/carbean/CarBean.java
• Create manifest file
Ch7/carbean/CarBean.mf
• Run JAR tool:
• jar cvfm CarBean.jar CarBean.mf *.class
• Import JAR file into builder environment



21

Composing Bean

• Make new frame
• Add car bean, slider to frame
• Edit stateChanged event of slider
• Add handler code
carBean1.setX(jSlider1.getValue());
• Compile and run
• Move slider: the car moves



22

Framework

• Set of cooperating classes
• Structures the essential mechanisms of a 

problem domain
• Example: Swing is a GUI framework
• Framework != design pattern
• Typical framework uses multiple design 

patterns

Application framework

• Implements services common to a type of 
applications

• Programmer forms subclasses of 
framework classes

• Result is an application
• Inversion of control: framework controls 

execution flow



23

Bottom line

• So when would it make sense to work with 
beans rather than low level code??


