CS1007: Object Oriented Design
and Programming in Java

Lecture #18
Mar 28

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcement

» Homework released
— Start early
— Test often

» Goal:
— Waste time playing othello ©
— Learn to work with objects
— Learn to use Al
— Learn to implement graphics (java framework)

Homework hints

Start early
Work with your UML sketches
Don’t be afraid of updating/changes

Focus:

Graphical displays

If you are working on your local machine
no need for this

If you want to work on cunix you need to
run a local xserver to display graphics on
your end

Putty needs x tunneling turned on

Download and run xwin32 on your
machine

Qutline

Hashing ..plenty of details

Copying (again)

Working with unknown objects ..reflection
Generic Objects inner working

Reading for today: 7.3-7.8
For next time 7.8 - end

Quick guestion

Given a set of dictionary word

How would you build a spell checker ?
Take a second to describe some pseudo code

How fast does this run?

HashTable

* what is happening in the background of the following
code:

ht.put('Sh553","Shlomo Hershkop™);

if(ht.containsKey("'sh553")){
String info = ht.get("'sh553™);
¥

* What is the difference between contains and
containsKey??

Now we can begin to ask

» What is happening in our black box?
« What algorithm is being used?

* |s it the best/fastest or can we improve
this.

Side issue

 When is it worth actually trying to improve
your code?

Rule of improvement
* Informally:

* When we are trying to improve something, we
can only improve it by the percentage of
improved code contribution

» Example: if the improvement if used 10% of the
time, say we improved by double the speed, it
will only have a fractional effect on the whole
system

Amdahl’'s Law

Formally
P = proportion which we are improving
S = speedup
1
Improvement = P
(1-P)+—
S

So if you make 10% of your program 10 times faster....

Rule 2: generally speaking 90% of the
work is being done by 10% of the code

What does that tell us?

Hashing Components

At the end of today’s class you should be
confident enough to know what these all
mean....

Hash function
Hash table
Collision
Load

Hash function

This is an algorithm for taking inputs and
producing fixed value outputs

JAVA P | 34h3423j43

Tango P 6w2

Used on many different areas
— Security

— Error checking

— Cryptography

— Today'’s class

Hashing

* hashCode method used in HashMap,
HashSet is the standard java hashing
algorithm

» Computes some (hopefully unique) int
from each object

* Rule: if two hashes are different then the
input differs in some way

One way hashes

« Given some input we can compute
Hash(input)

» Almost impossible to find:
Hash(x) == Hash(y)

» Given the results of the Hash can’t
compute the input, but given the input, can
verify the hash

Example: MD5

* Message digest algorithm
MD5("The quick brown fox jumps over the lazy dog") =
— 9e107d9d372bb6826bd81d3542a419d6
MD5("The quick brown fox jumps over the lazy cog") =
— 1055d3e698d289f2af8663725127hd4b

« MD5(*")
— d41d8cd98f00b204€9800998ecf8427e

Algorithm
« Example: hash code of String

int h = 0;

for (int i = 0; i < s._lengthQ); i++)
{ h=31%*h+ s.charAt(1);
}

 Hash code of "eat" is 100184
 Hash code of "tea" is 114704

Hashing

» Whatever returned be compatible with
equals:

« if x.equals(y), then has to x.hashCode() ==
y.hashCode()

* Object.hashCode hashes memory address
 NOT compatible with redefined equals

 Remedy: Hash all fields and combine
codes:

public class Employee

{
public int hashCode()

{

return name.hashCode()
+ new Double(salary) .hashCode();

10

Shallow vs. Deep Copy

« Assignment (copy = e€) makes shallow
copy
» Clone should be defined to make deep

copy
« Employee cloned = (Employee)e.clone();

e = — s |
: Employee
name = "Smith"
salary = 35000
cloned = .
: Employee
name = "Smith"
salary = 35000

Cloning

Object.clone makes new object and copies all fields
Cloning is subtle

Object.clone is protected

Subclass must redefine clone to be public

public class Employee

{
public Object clone()
{
return super.clone(); // not complete
}
}

Cloneable Interface

» Object.clone is nervous about cloning
* Will only clone objects that implement Cloneable interface

public interface Cloneable

{
}

* Interface has no methods!

» Tagging interface--used in test

if X implements Cloneable

* Obiject.clone throws CloneNotSupportedException
» A checked exception!

12

clone

public class Employee
implements Cloneable

{
public Object clone()
{
try
{
return super.clone();
}
catch(CloneNotSupportedException e)
{
return null; // won"t happen
}
}
}

default

» By default the clone method is very lazy

» Shallow copy!!!
— For immutable objects not a problem

13

A W : Employee

name =

salary = 35000 : Strin

hireDate = —— |

cloned =
TS, : Employee

name = ——— |

salary = 35000 : Date
hireDate = —— |

* Why doesn't clone make a deep copy?
— Wouldn't work for cyclic data structures

* Not a problem for immutable fields
* You must manually clone mutable fields

Deep cloning

public class Employee
implements Cloneable

{
public Object clone()
{
try
{
Employee cloned = (Employee)super.clone();
cloned._hireDate = (Date)hiredate.clone();
return cloned;
}
catch(CloneNotSupportedException e)
{
return null; // won"t happen
}
}
bs

T g : Employee

name = S

salary = 35000 e : String
hireDate = ————
cloned =
T : Employee

name = /

salary = 35000 : Date

hireDate = ——

: Date

15

Cloning and Inheritance

Object.clone is paranoid

— clone is protected

— clone only clones Cloneable objects
— clone throws checked exception
You don't have that luxury

Manager.clone must be defined if Manager adds
mutable fields

Rule of thumb: if you extend a class that defines clone,
redefine clone

Lesson to learn: Tagging interfaces are inherited. Use
them only to tag properties that inherit

Objects

So you understand...

Object equals
Object class objects
Object clone

16

Working with the unknown

» Generally when you have Object from
some class,

— you wrote it yourself, so have doc/source
— Using standard library, have docs

— Unknown class, have no idea how to:
* |Instantiated
e Construct

* If you don’t know how to use, probably not a good
idea to use ©

Reflection

* Ability of running program to find out about its
objects and classes
» Class object reveals
— superclass
— interfaces
— package
— names and types of fields
— names, parameter types, return types of methods
— parameter types of constructors

» Great of dynamic operation

17

Who cares?

* Most languages don’t have this

» Allows a program which is handling your
stuff to display and access class
properties

e Useful in visual environments

Reflection

» Class getSuperclass()

» Class]] getinterfaces()

» Package getPackage()

 Field[] getDeclaredFields()

» Constructor[] getDeclaredConstructors()
» Method[] getDeclaredMethods()

18

Enumerating Fields

* Print the names of all static fields of the

Math class:

Field[] fields =
Math.class.getDeclaredFields();

for (Field T : fields)

iIT (Modifier.isStatic(f.getModifiers()))

System.out.printin(f.getName());

Enumerating Constructors

for (Constructor c : cons)
{
Class[] params = cc.getParameterTypes();
System.out.print("’Rectangle(’);
boolean first = true;
for (Class p : params)

{
if (first) first = false; else
System._out.print(, ');
System.out.print(p.-getName());

}
System.out._printIn(")™);

}

19

Output

Rectangle()
Rectangle(jJava.awt.Rectangle)
Rectangle(int, int, Int, Int)
Rectangle(int, int)

Rectangle(jJava.awt.Point,
jJava.awt.Dimension)

Rectangle(jJava.awt.Point)
Rectangle(Java.awt.Dimension)

Getting a single method descriptor

* Supply method name
» Supply array of parameter types
» Example: Get Rectangle.contains(int, int):

Method m =
Rectangle.class.getDeclaredMethod(

"contains™, int.class, iInt.class);

» Example: Get default Rectangle constructor:
Constructor c =
Rectangle.class.getDeclaredConstructor();

» getDeclaredMethod, getDeclaredConstructor are
varargs methods

20

Invoking a Method

» Supply implicit parameter (null for static methods)
» Supply array of explicit parameter values

* Wrap primitive types

* Unwrap primitive return value

» Example: Call System.out.printin("Hello, World") the hard
way.

Method m =
PrintStream.class.getDeclaredMethod(

"println', String.class);
m.invoke(System.out, "Hello, World!");
* invoke is a varargs method

Inspecting Objects

» Can obtain object contents at runtime

» Useful for generic debugging tools

* Need to gain access to private fields

Class ¢ = obj.getClass();

Field T = c.getDeclaredField(name);
f.setAccessible(true);

» Throws exception if security manager disallows access
» Access field value:

Object value = T.get(obj);
f.set(obj, value);

» Use wrappers for primitive types

21

Inspecting Objects

* Example: Peek inside string tokenizer
Ch7/code/reflect2/FieldTester.java
e Output

int currentPosition=0

int newPosition=-1

int maxPosition=13
java.lang.String str=Hello, World!
jJava._lang.String delimiters=,
boolean retDelims=false

boolean delimsChanged=false

char maxDelimChar=,

int currentPosition=5

Inspecting Array Elements

» Use static methods of Array class

» Object value = Array.get(a, i);
Array.set(a, i, value);

 int n = Array.getLength(a);

« Construct new array:

Object a = Array.newlnstance(type, length);

22

Generics

« We've spoken about using generics with
regards to objects

* How is the code organized?

Generic Types

* A generic type has one or more type variables

» Type variables are instantiated with class or interface types

» Cannot use primitive types, e.g. no ArrayList<int>

* When defining generic classes, use type variables in definition:
public class ArraylList<E>

{
public E get(int i) { . . . }
public E set(int i, E newvalue) { . . . }
private E[] elementData;

}

23

Quick guestion ?

o If S asubtype of T,

* Why is ArrayList<S> not a subtype of
ArrayList<T>

» Generic method = method with type parameter(s)
public class Utils

{
public static <E> void Fill(ArrayList<E> a, E
value, int count)

{
for (int i = 0; 1 < count; i++)
a.add(value);

}
}
» A generic method in an ordinary (non-generic) class
» Type parameters are inferred in call
ArrayList<String> ids = new ArrayList<String>();

Utils.Ffill(ids, "default™, 10); // calls
Utils.<String>fill

24

Generic types

» Advantages?

» Disadvantages?

Type Bounds

» Type variables can be constrained with type bounds
» Constraints can make a method more useful
» The following method is limited:

public static <E> void append(ArrayList<E> a,
ArrayList<E> b, int count)
{

for (int i = 0; 1 < count && 1 < b.size(); i++)
a.add(b.get(1));
}

» Cannot append an ArrayList<Rectangle> to an ArrayList<Shape>

25

Type Bounds

e Overcome limitation with type bound:

public static <E, F extends E> void append(
ArrayList<E> a, ArrayList<F> b, int count)
{

for (int i = 0; i < count & i < b.size(); i++)
a.add(b.get(i));
3

» extends means "subtype", i.e. extends or implements
e Can specify multiple bounds:
E extends Cloneable & Serializable

Wildcards

» Definition of append never uses type F. Can
simplify with wildcard:

public static <E> void append(
ArrayList<E> a, ArrayList<? extends E> b, int
count)
{
for (int i = 0; 1 < count && 1 < b.size(); i++)
a.add(b.get(1));

26

