
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #18
Mar 28

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcement

• Homework released
– Start early
– Test often

• Goal:
– Waste time playing othello ☺
– Learn to work with objects
– Learn to use AI
– Learn to implement graphics (java framework)

2

Homework hints

• Start early
• Work with your UML sketches
• Don’t be afraid of updating/changes

• Focus:

Graphical displays

• If you are working on your local machine
no need for this

• If you want to work on cunix you need to
run a local xserver to display graphics on
your end

1. Putty needs x tunneling turned on
2. Download and run xwin32 on your

machine

3

Outline
• Hashing ..plenty of details
• Copying (again)
• Working with unknown objects ..reflection
• Generic Objects inner working

• Reading for today: 7.3-7.8
• For next time 7.8 - end

Quick question

• Given a set of dictionary word

• How would you build a spell checker ?

• Take a second to describe some pseudo code

• How fast does this run?

4

HashTable
• what is happening in the background of the following

code:

ht.put("Sh553","Shlomo Hershkop");

if(ht.containsKey("sh553")){
String info = ht.get("sh553");

}

• What is the difference between contains and
containsKey??

Now we can begin to ask

• What is happening in our black box?

• What algorithm is being used?

• Is it the best/fastest or can we improve
this.

5

Side issue

• When is it worth actually trying to improve
your code?

Rule of improvement
• Informally:

• When we are trying to improve something, we
can only improve it by the percentage of
improved code contribution

• Example: if the improvement if used 10% of the
time, say we improved by double the speed, it
will only have a fractional effect on the whole
system

6

Amdahl’s Law
• Formally
• P = proportion which we are improving
• S = speedup

• Improvement =

• So if you make 10% of your program 10 times faster….

()
S
PP +−1

1

• Rule 2: generally speaking 90% of the
work is being done by 10% of the code

• What does that tell us?

7

Hashing Components

• At the end of today’s class you should be
confident enough to know what these all
mean….

• Hash function
• Hash table
• Collision
• Load

Hash function
• This is an algorithm for taking inputs and

producing fixed value outputs

• Used on many different areas
– Security
– Error checking
– Cryptography
– Today’s class

JAVA 34h3423j43

Tango 6w2

8

Hashing

• hashCode method used in HashMap,
HashSet is the standard java hashing
algorithm

• Computes some (hopefully unique) int
from each object

• Rule: if two hashes are different then the
input differs in some way

One way hashes

• Given some input we can compute
Hash(input)

• Almost impossible to find:
Hash(x) == Hash(y)

• Given the results of the Hash can’t
compute the input, but given the input, can
verify the hash

9

Example: MD5

• Message digest algorithm
• MD5("The quick brown fox jumps over the lazy dog") =

– 9e107d9d372bb6826bd81d3542a419d6
• MD5("The quick brown fox jumps over the lazy cog") =

– 1055d3e698d289f2af8663725127bd4b
• MD5(“”)

– d41d8cd98f00b204e9800998ecf8427e

Algorithm

• Example: hash code of String

int h = 0;
for (int i = 0; i < s.length(); i++)
{ h = 31 * h + s.charAt(i);
}

• Hash code of "eat" is 100184
• Hash code of "tea" is 114704

10

Hashing

• Whatever returned be compatible with
equals:

• if x.equals(y), then has to x.hashCode() ==
y.hashCode()

• Object.hashCode hashes memory address
• NOT compatible with redefined equals
• Remedy: Hash all fields and combine

codes:

public class Employee
{

public int hashCode()
{

return name.hashCode()
+ new Double(salary).hashCode();

}
...

}

11

Shallow vs. Deep Copy

• Assignment (copy = e) makes shallow
copy

• Clone should be defined to make deep
copy

• Employee cloned = (Employee)e.clone();

12

Cloning
• Object.clone makes new object and copies all fields
• Cloning is subtle
• Object.clone is protected
• Subclass must redefine clone to be public

public class Employee
{

public Object clone()
{

return super.clone(); // not complete
}
...

}

Cloneable Interface
• Object.clone is nervous about cloning
• Will only clone objects that implement Cloneable interface

public interface Cloneable
{
}

• Interface has no methods!
• Tagging interface--used in test
if x implements Cloneable
• Object.clone throws CloneNotSupportedException
• A checked exception!

13

clone
public class Employee

implements Cloneable
{

public Object clone()
{

try
{

return super.clone();
}
catch(CloneNotSupportedException e)
{

return null; // won't happen
}

}
...

}

default

• By default the clone method is very lazy

• Shallow copy!!!
– For immutable objects not a problem

14

• Why doesn't clone make a deep copy?
– Wouldn't work for cyclic data structures

• Not a problem for immutable fields
• You must manually clone mutable fields

15

Deep cloning

public class Employee
implements Cloneable

{
public Object clone()
{

try
{

Employee cloned = (Employee)super.clone();
cloned.hireDate = (Date)hiredate.clone();
return cloned;

}
catch(CloneNotSupportedException e)
{

return null; // won't happen
}

}
...

}

16

Cloning and Inheritance
• Object.clone is paranoid

– clone is protected
– clone only clones Cloneable objects
– clone throws checked exception

• You don't have that luxury
• Manager.clone must be defined if Manager adds

mutable fields
• Rule of thumb: if you extend a class that defines clone,

redefine clone
• Lesson to learn: Tagging interfaces are inherited. Use

them only to tag properties that inherit

Objects

• So you understand…

• Object equals
• Object class objects
• Object clone

17

Working with the unknown

• Generally when you have Object from
some class,
– you wrote it yourself, so have doc/source
– Using standard library, have docs
– Unknown class, have no idea how to:

• Instantiated
• Construct
• If you don’t know how to use, probably not a good

idea to use ☺

Reflection
• Ability of running program to find out about its

objects and classes
• Class object reveals

– superclass
– interfaces
– package
– names and types of fields
– names, parameter types, return types of methods
– parameter types of constructors

• Great of dynamic operation

18

Who cares?

• Most languages don’t have this

• Allows a program which is handling your
stuff to display and access class
properties

• Useful in visual environments

Reflection

• Class getSuperclass()
• Class[] getInterfaces()
• Package getPackage()
• Field[] getDeclaredFields()
• Constructor[] getDeclaredConstructors()
• Method[] getDeclaredMethods()

19

Enumerating Fields

• Print the names of all static fields of the
Math class:

Field[] fields =
Math.class.getDeclaredFields();

for (Field f : fields)
if (Modifier.isStatic(f.getModifiers()))

System.out.println(f.getName());

Enumerating Constructors
for (Constructor c : cons)
{

Class[] params = cc.getParameterTypes();
System.out.print("Rectangle(");
boolean first = true;
for (Class p : params)
{

if (first) first = false; else
System.out.print(", ");

System.out.print(p.getName());
}
System.out.println(")");

}

20

Output
Rectangle()
Rectangle(java.awt.Rectangle)
Rectangle(int, int, int, int)
Rectangle(int, int)
Rectangle(java.awt.Point,
java.awt.Dimension)

Rectangle(java.awt.Point)
Rectangle(java.awt.Dimension)

Getting a single method descriptor

• Supply method name
• Supply array of parameter types
• Example: Get Rectangle.contains(int, int):
Method m =
Rectangle.class.getDeclaredMethod(
"contains", int.class, int.class);

• Example: Get default Rectangle constructor:
Constructor c =
Rectangle.class.getDeclaredConstructor();

• getDeclaredMethod, getDeclaredConstructor are
varargs methods

21

Invoking a Method
• Supply implicit parameter (null for static methods)
• Supply array of explicit parameter values
• Wrap primitive types
• Unwrap primitive return value
• Example: Call System.out.println("Hello, World") the hard

way.
Method m =
PrintStream.class.getDeclaredMethod(
"println", String.class);

m.invoke(System.out, "Hello, World!");
• invoke is a varargs method

Inspecting Objects
• Can obtain object contents at runtime
• Useful for generic debugging tools
• Need to gain access to private fields
Class c = obj.getClass();
Field f = c.getDeclaredField(name);
f.setAccessible(true);
• Throws exception if security manager disallows access
• Access field value:
Object value = f.get(obj);
f.set(obj, value);
• Use wrappers for primitive types

22

Inspecting Objects
• Example: Peek inside string tokenizer
Ch7/code/reflect2/FieldTester.java
• Output

int currentPosition=0
int newPosition=-1
int maxPosition=13
java.lang.String str=Hello, World!
java.lang.String delimiters=,
boolean retDelims=false
boolean delimsChanged=false
char maxDelimChar=,

int currentPosition=5
. . .

Inspecting Array Elements

• Use static methods of Array class
• Object value = Array.get(a, i);
Array.set(a, i, value);
• int n = Array.getLength(a);
• Construct new array:
Object a = Array.newInstance(type, length);

23

Generics

• We’ve spoken about using generics with
regards to objects

• How is the code organized?

Generic Types
• A generic type has one or more type variables
• Type variables are instantiated with class or interface types
• Cannot use primitive types, e.g. no ArrayList<int>
• When defining generic classes, use type variables in definition:
public class ArrayList<E>
{

public E get(int i) { . . . }
public E set(int i, E newValue) { . . . }
. . .
private E[] elementData;

}

24

Quick question ?

• If S a subtype of T,

• Why is ArrayList<S> not a subtype of
ArrayList<T>

• Generic method = method with type parameter(s)
public class Utils
{

public static <E> void fill(ArrayList<E> a, E
value, int count)
{

for (int i = 0; i < count; i++)
a.add(value);

}
}
• A generic method in an ordinary (non-generic) class
• Type parameters are inferred in call
ArrayList<String> ids = new ArrayList<String>();
Utils.fill(ids, "default", 10); // calls

Utils.<String>fill

25

Generic types

• Advantages?

• Disadvantages?

Type Bounds
• Type variables can be constrained with type bounds
• Constraints can make a method more useful
• The following method is limited:

public static <E> void append(ArrayList<E> a,
ArrayList<E> b, int count)

{
for (int i = 0; i < count && i < b.size(); i++)

a.add(b.get(i));
}

• Cannot append an ArrayList<Rectangle> to an ArrayList<Shape>

26

Type Bounds
• Overcome limitation with type bound:

public static <E, F extends E> void append(
ArrayList<E> a, ArrayList<F> b, int count)

{
for (int i = 0; i < count && i < b.size(); i++)

a.add(b.get(i));
}

• extends means "subtype", i.e. extends or implements
• Can specify multiple bounds:
E extends Cloneable & Serializable

Wildcards

• Definition of append never uses type F. Can
simplify with wildcard:

public static <E> void append(
ArrayList<E> a, ArrayList<? extends E> b, int
count)

{
for (int i = 0; i < count && i < b.size(); i++)

a.add(b.get(i));
}

