
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #17
Mar 23

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Objects and types
• Understanding what is happening in the

background
• Understanding the program

• Reading: 7-7.4

2

Announcements

• Posted last class notes

• Code from the book:
– Check the resource webpage

• Homework 3 will be released this weekend

Understanding variables

• To understand what is going on with
variables in any programming language,
need to understand

• Which types are support
• Which values can be assigned to them

3

Java view of Types

• Primitive types:
• Class types
• Interface types
• Array types
• The null type
• Note:

– void is not a type

Values

• value of primitive type
• reference to object of class type
• reference to array
• null
• Note: Can't have value of interface type

4

Array types

• Although arrays can be thought of as a
collection of types, it actually is its own
type

Example of inheritance

• Interface java.awt.Shape
– Represents a two dimentional shape

• Some implementations:
– Rectangle
– Polygon

5

• So I can say:

Shape shapeobj;
Rectangle rec = new Rectangle();
Polygon poly = new Polygon();
shapeobj = rec;

System.out.println(“shape is now: “ +
shapeobj);

Careful
Rectangle[] r = new Rectangle[10];

Shape[] s = r;

• This assignment will compile fine
s[0] = new Polygon();

• But Throws an ArrayStoreException at runtime

6

Why primitives

• If java is so object oriented

• How do primitives fit in?

7

Upgrading

• Can always upgrade a primitive to an
equivalent class:

• Integer i = new Integer(5);

• Why would you want to upgrade to object?

• Should be aware of memory overhead

Wrapping

• Primitive types aren't classes
• Use wrappers when objects are expected
• Wrapper for each type:

Integer Short Long Byte
Character Float Double Boolean

8

Before java 1.5

Integer A = new Integer(5);
…
Int x = A.intValue();

Boxing

• Auto-boxing and auto-unboxing
• Integer X = 5;
ArrayList<Integer> numbers = new
ArrayList<Integer>();

numbers.add(13);

int n = numbers.get(0);

9

In between types

• Enum is a type with a preset number of
values

• Great for keeping track of states

• enum types are classes; can add
methods, fields, constructors

• Enum API

Enumerated

enum Size { SMALL, MEDIUM, LARGE
}

• Typical use:
Size imageSize = Size.MEDIUM;
if (imageSize == Size.SMALL) . .

10

• Safer than integer constants
public static final int SMALL = 1;
public static final int MEDIUM = 2;
public static final int LARGE = 3;

Typesafe Enumeration
• enum equivalent to class with fixed number of instances
public class Size
{

private Size() { }
public static final Size SMALL = new Size();
public static final Size MEDIUM = new Size();
public static final Size LARGE = new Size();

}

11

Object testing

• Many methods will return an Object object.

• Object Obj = ????

• How do we figure out what we are dealing
with?

Type Inquiry

• Test whether e is a Shape:
if (e instanceof Shape) . . .

• Good idea before doing a cast:
Shape s = (Shape) e;

12

• Remember: we don't know exact type of e

• WHY??

• Note:
– If e is null, test returns false (no exception)

Confusion

• If Object class isn’t confusing enough

• There is also a type of class called :
• Class

13

Plain old class

• getClass method gets class of any object
• Returns object of type Class
• Class object describes a type
Object e = new Rectangle();

Class c = e.getClass();
System.out.println(c.getName()); //
prints java.awt.Rectangle

• .class suffix yields Class object:
Class c = Rectangle.class;

• Class is not exactly a class since also
works for primitives
int.class
void.class
Shape.class

14

• Use Class.forName method to yields a
Class object:

Class c =
Class.forName("java.awt.Rectang
le");

An Employee Object vs. the
Employee.class Object

15

Checking Type

• Test whether e is a Rectangle:
if (e.getClass() == Rectangle.class) . . .

• Why can we use the ==

• A unique Class object for every class
• Test fails for subclasses
• Use instanceof to test for subtypes:

– if (e instanceof Rectangle) . . .

16

Array Types
• Can apply getClass to an array
• Returned object describes an array type
double[] a = new double[10];
Class c = a.getClass();
if (c.isArray())

System.out.println(c.getComponentType());

• getName produces strange names for array types
[Z for boolean[]
[D for double[])
[[java.lang.String; for String[][]

SUPERclass

• All classes extend Object
• Most useful methods:

– String toString()
– boolean equals(Object otherObject)
– Object clone()
– int hashCode()

17

toString
• Returns a string representation of the object
• Useful for debugging
• Example: Rectangle.toString returns something

like
java.awt.Rectangle[x=5,y=10,width=20,
height=30]

• toString used by concatenation operator
• aString + anObject
means
aString + anObject.toString()

Default

• Object.toString()
– Prints class name and object address

System.out.println(System.out) yields
java.io.PrintStream@d2460bf

• Implementor of PrintStream didn't override
toString:

18

Overriding toString
• Format all fields:
public class Employee
{

public String toString()
{

return getClass().getName()
+ "[name=" + name
+ ",salary=" + salary
+ "]";

}
...

}

• Typical string:
Employee[name=Harry Hacker,salary=35000]

Subclass toString
• Format superclass first
public class Manager extends Employee
{

public String toString()
{

return super.toString()
+ "[department=" + department +

"]";
}
...

}
• Typical string
Manager[name=Dolly Dollar,salary=100000][department=Finance]

19

Equals()

• equals tests for equal contents
• Used in many standard library methods
• Example: ArrayList.indexOf

– Will trigger a equals call on your object in the
array

• Unique to your class implimentation

/**
Searches for the first occurrence of the given argument,
testing for equality using the equals method.
@param elem an object.
@return the index of the first occurrence
of the argument in this list; returns -1 if
the object is not found.

*/
public int indexOf(Object elem)
{

if (elem == null)
{

for (int i = 0; i < size; i++)
if (elementData[i] == null) return i;

}
else
{

for (int i = 0; i < size; i++)
if (elem.equals(elementData[i])) return i;

}
return -1;

}

20

Object.equals
• Object.equals tests for identity:

public class Object
{

public boolean equals(Object obj)
{

return this == obj;
}
...

}

• Override equals if you don't want to inherit that behavior

Requirements Rules

1. reflexive: x.equals(x)
2. symmetric: x.equals(y) if and only if

y.equals(x)
3. transitive: if x.equals(y) and y.equals(z),

then x.equals(z)
4. x.equals(null) must return false

21

Employee.equals

• What does it mean ?

Overriding equals
• Notion of equality depends on class, YOU need to define this
• Example: compare all fields
public class Employee
{

public boolean equals(Object otherObject)
// not complete yet

{
Employee other = (Employee)otherObject;
return name.equals(other.name)

&& salary == other.salary;
}
...

}
• Must cast the Object parameter to subclass
• Can use == for primitive types, equals for object fields

22

Rules?

• What rules are being violated ?

fixing

• Add test for null:
if (otherObject == null) return
false

• What happens if otherObject not an
Employee ?

23

• Common error: use of instanceof

if (!(otherObject instanceof
Employee)) return false;

• Which type of classes is this valid for?

• Violates symmetry: Suppose e, m have
same name, salary

e.equals(m) is true (because m instanceof
Employee)

m.equals(e) is false (because e isn't an
instance of Manager)

• Remedy: Test for class equality
if (getClass() != otherObject.getClass())
return false;

24

Best practice
• Start with these three tests:

public boolean equals(Object otherObject)
{

if (this == otherObject) return true;
if (otherObject == null) return false;
if (getClass() != otherObject.getClass())

return false;
...

}

• First test is an optimization

Equals in subclass
• Call equals on superclass
public class Manager
{

public boolean equals(Object otherObject)
{

Manager other = (Manager)otherObject;
return super.equals(other)

&&
department.equals(other.department);
}

}

25

Not always straight forward
• Two sets are equal if they have the same elements in

some order
public boolean equals(Object o)
{

if (o == this) return true;
if (!(o instanceof Set)) return false;
Collection c = (Collection) o;
if (c.size() != size()) return false;
return containsAll(c);

}

Hashing

• Goal want to quickly locate elements

• Need to use .equals() method to know if
I’ve located what I’m looking for

26

Next time

• Read 7.4-7.7

• Check for homework 3 tomorrow

