
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #16
Mar 21

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcements

• Will return midterms today
• Please make sure you understand the

questions/answers, if not stop by OH

2

Outline
• Serializable
• Java implementation of Objects
• Types
• wrappers
• Testing types
• Object class
• Hashes
• Copy
• Covering chapter 6, 7-7.2

– next time 7 - 7.5

• You’ve probably all heard of

• Web cache

• Memory cache

• Level 2 cpu cache

3

• What is a cache??

idea

• The general idea of the cache is to store
frequently accessed data for rapid access

4

One application

• Say you have a file describing a group of
people with various features

• You create a java object, and then create
a custom horoscope……

• How to make it faster?

Idea:

• Allow the programmer to take a snapshot
of live memory, and save it in a binary
form…..

• No need to recreate classes

1. We need to tell java we want to save a
certain class

2. Save the class

5

Example

public class student {
private String name;
private int age;

…
public String getName(){

return name;
}

}

java.io.Serializable

public class student implements Serializable
{

private String name;
private int age;

…
public String getName(){

return name;
}

}

6

Save routine
public static void main(String args[]) {

Student one = new Student….

try{

FileOutputStream fos = new FileOutputStream(“saved.data”);

ObjectOutputStream out = new ObjectOutputStream(fos);

out.writeObject(one);

out.close;

}catch(IOException ioe){ .. }

Load Routine
try{

FileInputStream fis = new FileInputStream(“saved.data”);

ObjectInputStream in = new ObjectInputStream(fis);

Student oldone = (Student)in.readObject();

}catch(IOException ioe) {…}

7

Important note

• Only objects which extend serializable can
be saved

• SO:
– If your class has field variables which don’t

implement this….

Two options

1. Mark those non serializable as ‘transient’
this tells the jvm not to save those
variables

2. Implement a custom writeObject and
readObject

can then choose which fields to save and
load, and initialize any others

8

How to add read/write
private void writeObject(java.io.ObjectOutputStream

out) throws IOException{
out.writeObject(name);
out.writeInt(age);

}
private void readObject(java.io.ObjectInputStream
in) throws IOException, ClassNotFoundException{

name = (String)in.readObject();
age = in.readInt();

}

Inheritance

• Use the ‘extends’ keyword
• Allows you to reuse objects

• Some issues:
– When do you extend?
– When do you implement an interface?

9

public class Employee
{

public Employee(String aName) { name = aName; }
public void setSalary(double aSalary)

{ salary = aSalary; }
public String getName() { return name; }
public double getSalary() { return salary; }

private String name;
private double salary;

}

10

How do we specialize the class?

• Manager class adds new method:
setBonus

• Manager class overrides existing method:
getSalary

• Adds salary and bonus

Overriding methods

• methods setSalary, getname (inherited
from Employee)

• method getSalary (overridden in Manager)
• method setBonus (defined in Manager)
• fields name and salary (defined in

Employee)
• field bonus (defined in Manager)

11

• Why is Manager a subclass?
• Isn't a Manager superior?
• Doesn't a Manager object have more

fields?
• The set of managers is a subset of the set

of employees

Inheritance Hierarchies

• Real world: Hierarchies describe
general/specific relationships
– General concept at root of tree
– More specific concepts are children

• Programming: Inheritance hierarchy
– General superclass at root of tree
– More specific subclasses are children

12

Substitution Principle
• Formulated by Barbara Liskov
• You can use a subclass object whenever a

superclass object is expected
Example:
Employee e;
...

System.out.println("salary=" + e.getSalary());
• Can set e to Manager reference
• Polymorphism: Correct getSalary method is

invoked

Dealing with superclass
• Can't access private fields of superclass
public class Manager extends Employee
{

public double getSalary()
{

return salary + bonus; // ERROR--private field
}
...

}
• Be careful when calling superclass method
public double getSalary()
{

return getSalary() + bonus; // ERROR--recursive
call
}

13

super

• Use super keyword
public double getSalary()
{

return super.getSalary() + bonus;
}

• super is not a reference
• super turns off polymorphic call

mechanism

Super constructors
• Use super keyword in subclass constructor:
public Manager(String aName)
{
super(aName); // calls superclass constructor
bonus = 0;
}

• Call to super must be first statement in subclass
constructor

• If subclass constructor doesn't call super,
superclass must have constructor without
parameters

14

Dealing with preconditions
• Precondition of redefined method at most as strong
public class Employee
{

/**
Sets the employee salary to a given value.
@param aSalary the new salary
@precondition aSalary > 0

*/
public void setSalary(double aSalary) { ... }

}

• Can we redefine Manager.setSalary with precondition
salary > 100000?
• No--Could be defeated:

Manager m = new Manager();
Employee e = m;
e.setSalary(50000);

Post conditions
• Postcondition of redefined method at least as

strong
• Example: Employee.setSalary promises not to

decrease salary
• Then Manager.setSalary must fulfill

postcondition
• Redefined method cannot be more private.

(Common error: omit public when redefining)
• Redefined method cannot throw more checked

exceptions

15

Abstract classes

• Can create a class which is abstract i.e.
can not be instantiated

• Can define abstract methods

• So when would you use Interface vs
abstract class??

Abstract class

• You can define methods/variables in the
abstract class

• Will be available to anyone extending the
base abstract class

• No need to recode common methods

16

Re-use

• Most of the reuse with graphical
programming will be through interface
implementations

• Example: dealing with mouse actions

Mouse listeners

• Attach mouse listener to component
• Can listen to mouse events (clicks) or

mouse motion events

• Anyone know how?

17

Interface!
public interface MouseListener
{

void mouseClicked(MouseEvent event);
void mousePressed(MouseEvent event);
void mouseReleased(MouseEvent event);
void mouseEntered(MouseEvent event);
void mouseExited(MouseEvent event);

}

public interface MouseMotionListener
{

void mouseMoved(MouseEvent event);
void mouseDragged(MouseEvent event);

}

• Includes a lot

• What if you just want part of it?

18

Extend MouseAdapter
public class MouseAdapter implements MouseListener
{

public void mouseClicked(MouseEvent event) {}
public void mousePressed(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}

}

usage

addMouseListener(new
MouseAdapter()
{

public void mousePressed(MouseEvent event)
{

mouse action goes here
}

});

19

Example: Car Mover Program

• Ch6/car/CarComponent.java
• Ch6/car/CarMover.java
• Ch6/car/CarShape.java

20

Types

• A set of values and operations with those
values.

Strongly typed language

• Strongly typed language: compiler and run-time
system check that no operation can execute that
violates type system rules

• Compile-time check
Employee e = new Employee();
e.clear(); // ERROR no such method

• Run-time check:
e = null;

e.setSalary(200); // ERROR

21

Java view of Types
• Primitive types:
int short long byte
char float double boolean
• Class types
• Interface types
• Array types
• The null type
• Note:

– void is not a type

Values

• value of primitive type
• reference to object of class type
• reference to array
• null
• Note: Can't have value of interface type

22

Subtypes
• S is a subtype of T if:
• S and T are the same type
• S and T are both class types, and T is a direct or indirect

superclass of S
• S is a class type, T is an interface type, and S or one of

its superclasses implements T
• S and T are both interface types, and T is a direct or

indirect superinterface of S
• S and T are both array types, and the component type of

S is a subtype of the component type of T
• S is not a primitive type and T is the type Object
• S is an array type and T is Cloneable or Serializable
• S is the null type and T is not a primitive type

Examples
• Container is a subtype of Component
• JButton is a subtype of Component
• FlowLayout is a subtype of LayoutManager
• ListIterator is a subtype of Iterator
• Rectangle[] is a subtype of Shape[]
• int[] is a subtype of Object
• int is not a subtype of long
• long is not a subtype of int
• int[] is not a subtype of Object[]

23

