
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #14
Mar 9

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Wrap up patterns
• Examples and code

• Reading chapter 5.4 – end of 5



2

Announcements

• Almost done, not quite the exams, will post 
over weekend on courseworks, will return 
when we meet again

• Will outline the othello work and your part

Clarification 

• Some confusion on AWT vs Swing

• AWT
– Still very used
– Very useful
– Not organized as objects



3

Patterns 

• We want to identify software patterns
• Want to use them in practical ways

• Doing example of layout manager
– Invisible piece of your code

Example
• Say you have 2 different classes, A and B

• In both A and B you are doing 
• …

calculate1();
calculate2();
calculate3();
…

• A PATTERN!



4

• What is the best way to take advantage of 
the patterns?

• Through inheritance

• Through another class

• What is the difference?



5

From last class

• Pluggable strategy for layout management
• Layout manager object responsible for 

executing concrete strategy
• Generalizes to Strategy Design Pattern

Generalization of Patterns

1. A class can benefit from different 
variants for an algorithm

2. Clients sometimes want to replace 
standard algorithms with custom 
versions

3. What is the best approach?



6

Solution
• Usually you can get away with
• an interface type that is an abstraction for the 

algorithm
– What does this mean?

• Actual strategy classes realize this interface 
type.

• Clients can supply strategy objects
• Whenever the algorithm needs to be executed, 

the context class calls the appropriate methods 
of the strategy object

In short

• PLUG AND PRAY



7

Patterns 

• Many different patterns
• We are only covering a subset
• To get a feel for programming design

Composite pattern

• Idea: have a bunch of little pieces, each 
one behaves the same way

• Goal: want to simplify the management of 
all the pieces, by treating them as a single 
unit

• Where have we seen this?



8

• Container can have tons of little 
components, to get the size it runs through 
each and asks them for their preferred 
size

Practical Question

• In GUI/Graphics many times have large 
graphic

• But our screen resolution certain size (lets 
say smaller)

• Want to display large components
– Large image on ipod/cellphone

• any ideas on how to approach the 
problem?



9

One solution: the Scroll bar

ScrollBars 2 ideas

• Scroll bars can be attached to components
• Approach #1: Component class can turn 

on scroll bars if too large to display
• Approach #2: Scroll bars can surround 

component by user



10

How java approaches it

JScrollPane pane = new 
JScrollPane(component);

• Swing uses approach #2
• JScrollPane is again a component



11

Pattern 

• So what is the pattern here?

This is a Decorator Pattern

1. Component objects can be decorated 
(visually or behaviorally enhanced)

2. The decorated object can be used in the 
same way as the undecorated object

3. The component class does not want to 
take on the responsibility of the 
decoration

4. There may be an open-ended set of 
possible decorations



12

pattern 
1. Define an interface type that is an abstraction for the 

component
2. Concrete component classes impliment this interface 

type.
3. Decorator classes also realize this interface type.
4. A decorator object manages the component object that 

it decorates
5. When implementing a method from the component 

interface type, the decorator class applies the method 
to the decorated component and combines the result 
with the effect of the decoration.



13

• Patterns are not just GUI objects

• Also behavior patterns

Stream Patterns
• InputStreamReader reader = new 
InputStreamReader(System.in); 

• BufferedReader console = new 
BufferedReader(reader); 

• BufferedReader takes a Reader and adds 
buffering

• Result is another Reader: Decorator pattern
• Many other decorators in stream library, e.g. 

PrintWriter



14

Decorator Pattern: Input Streams

readmethod()

BufferedReaderDecorator

InputStreamReaderConcreteComponent

ReaderComponent

Actual Name (input 
streams)

Name in Design Pattern

How to Recognize Patterns

• Look at the intent of the pattern
• E.g. COMPOSITE has different intent than 

DECORATOR
• Remember common uses (e.g. 

STRATEGY for layout managers)
• Not everything that is strategic is an 

example of STRATEGY pattern
• Use context and solution as "litmus test"



15

Example

• Can add border to Swing component
Border b = new EtchedBorder()
component.setBorder(b);
• Undeniably decorative
• Is it an example of DECORATOR?

Litmus Test
1. Component objects can be decorated (visually 

or behaviorally enhanced)
PASS

2. The decorated object can be used in the same 
way as the undecorated object
PASS

3. The component class does not want to take on 
the responsibility of the decoration
FAIL--the component class has setBorder method

4. There may be an open-ended set of possible 
decorations



16

Using Patterns

• Invoice contains line items
• Line item has description, price
• Interface type LineItem:
Ch5/invoice/LineItem.java
• Product is a concrete class that 

implements this interface:
Ch5/invoice/Product.java

Bundles

• Bundle = set of related items with 
description+price

• E.g. stereo system with tuner, amplifier, 
CD player + speakers

• A bundle has line items
• A bundle is a line item
• COMPOSITE pattern
Ch5/invoice/Bundle.java (look at getPrice)



17

Discounted Items

• Store may give discount for an item
• Discounted item is again an item
• DECORATOR pattern
• Ch5/invoice/DiscountedItem.java (look at 

getPrice)
• Alternative design: add discount to 

LineItem



18

Model View Separation

• GUI has commands to add items to 
invoice

• GUI displays invoice
• Decouple input from display
• Display wants to know when invoice is 

modified
• Display doesn't care which command 

modified invoice
• OBSERVER pattern



19

Change Listener
• Use standard ChangeListener interface type
public interface ChangeListener
{

void stateChanged(ChangeEvent event);
}
• Invoice collects ArrayList of change listeners
• When the invoice changes, it notifies all listeners:
• ChangeEvent event = new ChangeEvent(this);
for (ChangeListener listener : listeners)

listener.stateChanged(event);

Question 

• If you run a family tree program and create 
your family tree in some java class form, 
how do you keep it saved?



20

Idea:

• Allow the programmer to take a snapshot 
of live memory, and save it in a binary 
form…..

• No need to recreate classes

1. We need to tell java we want to save a 
certain class

2. Save the class

java.io.Serializable

public class student implements Serializable
{

private String name;
private int age;

…
public String getName(){

return name;
}
}



21

Next Time

• Continue reading

• Start homework


