
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #13
Mar 2 

Shlomo Hershkop
shlomo@cs.columbia.edu

Midterm 

• Hope you had some fun taking it
• Will review it in class (if you couldn’t make 

it to class, please grab someone’s 
notes…if you are in class, please take 
notes)

• Will try to review fundamental concepts in 
each question.



2

midterm
• Try to balance your time, and topics

• No reason to ask about random stuff we havent
touched

• No reason to ask stuff you will get wrong

• No power rush from tricking students

• These exams are a lesson for everyone

Review Midterm 

• Question 1

• General definitions

• Looking for specific point, hopefully your 
answer
– Legible
– Correct
– You understand what you wrote ☺



3

Question 2

• Understanding packages

• Understanding directory relationships to 
packages

• Picking up on final keyword in method 
defintion

Q3

• == vs. .equals

• One compares address of referenced objects

• One compares contents of specific object

• Challenge: Can 2 different classes get a true for 
the == operation ?



4

Interfaces question

• Interface definition

• Use of interface

• Different between the two compare 
interfaces

• Why both?

Question 5

• Understanding method chaining

• Will walk/talk through the code



5

Copy question

• Related to references

• Pretty much covered in the course

Recursion question

• Very open ended

• What ideas did you use ?



6

idea

• Base case:
• 1) a==b

– Return a
• 2) Need to check a<b

– Return 0

• Else
• Return a + sum(a+1,b-1) + b

How to do it better?



7

Call helper method

• Can use more args ☺

• Would carry around the sum in third arg

• Help( a, b, 0)

• Recursion: Help(a+1,b-1,a+b)

Random issues: Return values

• Java will in some case make believe there are 
parenthesis around something

Example:

public boolean Something(int a,int b){
return 5 + a == b;
}

Problem:
public boolean Something(int a,int b){

return 5 + a * 10  == b;
}



8

Random II: return live iterator

• Most of the time, when you consider 
Iterator, think of implimented class

• Can also return an anonymous inline 
Iterator:

• Code: 
– Represent a group of items (will use an array)
– Give back an iterator on request

Random III: Public/Private classes

• Each .java file must contain one 
public/abstract class

• But can contain many private classes

• NOTE: if you got the private class marked 
wrong….please see me, I thought more 
people were aware of this fact.



9

Bottom line

• Will be returning the exams next class
• Will post grades on to courseworks

• Please stop by OH to discuss any 
concerns etc you might have

• Make sure to get started early on the next 
homework (released by next class)

Post midterm

• Will be covering:
– Start chapter 5

• Patterns of programming
• Object design and considerations
• Many examples
• Application to homework: writing Othello game



10

Patterns

• Many times when programming large projects:
– Notice certain underlying patterns

– Example: email file

many different ways of representing email messages

but: end user will want to treat them the same way!

– Haha! A pattern

Patterns 

• Advantage:
– If can group what you are doing as a specific 

pattern
• Can reuse related patterns (code)
• Can study for optimization purposes…one 

discovery can be easily applied to many different 
types of stuff, if we’ve grouped them into patterns

• Easier to think about huge projects if we have a 
few patterns to talk about

• Seemed to have worked in architecture



11

Iterator Pattern

• Covered before midterm
• Collection of elements
• Users want to examine elements
• We don’t want to expose the underlying 

implementation
• Ability to allow multiple independent 

access

Iterators pattern

• Define a general iterator that fetches one 
element at a time

• Each iterator object keeps track of the 
position of the next element

• If there are several collection/iterator
variations, it is best if the collection and 
Iterator classes realize common interface 
types.



12

Observer Patterns 

• In many applications will have multiple 
views of the same data

• When you edit one part, affects other parts 
of the view

• Eclipse



13

Division of Labor

• Model: data structure, no visual 
representation

• Views: visual representations
• Controllers: user interaction

• Views/controllers update model
• Model tells views that data has changed
• Views redraw themselves



14

Observer Pattern II
• Model notifies views when something interesting 

happens
• Button notifies action listeners when something 

interesting happens
• Views attach themselves to model in order to be 

notified
• Action listeners attach themselves to button in 

order to be notified
• Generalize: Observers attach themselves to 

subject



15

For Next time

• Will cover more examples with 
catch/finally

• Will cover more coded examples with 
iterators

• Will cover observer examples/code

• Read chapter 5.1-5.6


