CS1007: Object Oriented Design
and Programming in Java

Lecture #13
Mar 2

Shlomo Hershkop
shlomo@cs.columbia.edu

Midterm

* Hope you had some fun taking it

» Will review it in class (if you couldn’t make
it to class, please grab someone’s
notes...if you are in class, please take
notes)

« Will try to review fundamental concepts in
each question.

midterm

» Try to balance your time, and topics

* No reason to ask about random stuff we havent
touched

* No reason to ask stuff you will get wrong
* No power rush from tricking students

» These exams are a lesson for everyone

Review Midterm

* Question 1
» General definitions

» Looking for specific point, hopefully your
answer
— Legible
— Correct
— You understand what you wrote ©

Question 2

» Understanding packages

» Understanding directory relationships to
packages

 Picking up on final keyword in method
defintion

03

e ==vs. .equals
* One compares address of referenced objects
* One compares contents of specific object

* Challenge: Can 2 different classes get a true for
the == operation ?

Interfaces question

Interface definition
Use of interface

Different between the two compare
interfaces

Why both?

Question 5

Understanding method chaining

Will walk/talk through the code

Copy question

» Related to references

» Pretty much covered in the course

Recursion question

* Very open ended

* What ideas did you use ?

Idea

Base case:
1) a==b
— Return a

2) Need to check a<b
—Return 0

Else
Return a + sum(a+1,b-1) + b

How to do it better?

Call helper method

Can use more args ©

Would carry around the sum in third arg

Help(a, b, 0)

Recursion: Help(a+1,b-1,a+b)

Random issues: Return values

« Java will in some case make believe there are
parenthesis around something

Example:

public boolean Something(int a,int b){

return 5 + a == b;
3

Problem:

public boolean Something(int a,int b){
return 5 + a * 10 == b;

}

Random Il: return live iterator

* Most of the time, when you consider
Iterator, think of implimented class

« Can also return an anonymous inline
Iterator:

» Code:
— Represent a group of items (will use an array)
— Give back an iterator on request

Random lll: Public/Private classes

« Each .java file must contain one
public/abstract class

« But can contain many private classes

 NOTE: if you got the private class marked
wrong....please see me, | thought more
people were aware of this fact.

Bottom line

Will be returning the exams next class
Will post grades on to courseworks

Please stop by OH to discuss any
concerns etc you might have

Make sure to get started early on the next
homework (released by next class)

Post midterm

* Will be covering:

— Start chapter 5
* Patterns of programming
» Object design and considerations
* Many examples
» Application to homework: writing Othello game

Patterns

* Many times when programming large projects:
— Notice certain underlying patterns

— Example: email file
many different ways of representing email messages

but: end user will want to treat them the same way!

— Haha! A pattern

Patterns

« Advantage:

— If can group what you are doing as a specific
pattern
» Can reuse related patterns (code)

 Can study for optimization purposes...one
discovery can be easily applied to many different
types of stuff, if we've grouped them into patterns

* Easier to think about huge projects if we have a
few patterns to talk about

* Seemed to have worked in architecture

10

Ilterator Pattern

Covered before midterm
Collection of elements
Users want to examine elements

We don’t want to expose the underlying
implementation

Ability to allow multiple independent
access

lterators pattern

Define a general iterator that fetches one
element at a time

Each iterator object keeps track of the
position of the next element

If there are several collection/iterator
variations, it is best if the collection and
Iterator classes realize common interface

types.

11

: «interface»
«interface» lterator
Aggregate .

----------- Client p--------->
next()
createlterator() isDone()
A currentltem()
= 4

Concrete Concrete

Aggregate [S~77 T e Ilterator

Observer Patterns

* In many applications will have multiple
views of the same data

* When you edit one part, affects other parts

of the view

» Eclipse

12

Division of Labor

 Model: data structure, no visual
representation

* Views: visual representations
« Controllers: user interaction

» Views/controllers update model
» Model tells views that data has changed
* Views redraw themselves

13

Controller Model View

insertText

notify

repaint

o getText

Observer Pattern Il

Model notifies views when something interesting
happens

Button notifies action listeners when something
interesting happens

Views attach themselves to model in order to be
notified

Action listeners attach themselves to button in
order to be notified

Generalize: Observers attach themselves to
subject

14

For Next time

Will cover more examples with
catch/finally

Will cover more coded examples with
iterators

Will cover observer examples/code

Read chapter 5.1-5.6

15

