
1

1

CS1007: Object Oriented Design
and Programming in Java

Lecture #11
Feb 21

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• Interfaces
• Inheritance
• Graphics

• Reading: Chapter 4.10, 5-5.4.1
• Next time: 5.4.2-5.8

2

3

Announcements

• Midterm review on Thursday
– Will go over study strategy
– Will release sample exams
– Will do quick overview at end of class

• Chapter 1 – 5.2 (page 179)
• Anything else we covered in class

4

From last time

• We discussed interface objects using a
icon as an example

• Please take a look at the code from the
book

• Understand it enough to be able to read
interface code

3

5

Using it
01: import javax.swing.*;
02:
03: public class IconTester
04: {
05: public static void main(String[] args)
06: {
07: JOptionPane.showMessageDialog(
08: null,
09: "Hello, Mars!",
10: "Message",
11: JOptionPane.INFORMATION_MESSAGE,
12: new MarsIcon(50));
13: System.exit(0);
14: }
15: }
16:

6

The Icon Interface Type and
Implementing Classes

4

7

Fundamentals again

• Polymorphism
• Inheritance
• Functional inheritance
• Encapsulation

8

Polymorphism

• What is polymorphism?

5

9

Polymorphism

• Ability of objects to react differently to the
same method

• Example:
– something.toString()

will depend on what the something is…

10

Polymorphism
• public static void showMessageDialog(...Icon ourIcon)

• showMessageDialog shows
– icon
– message
– OK button

• showMessageDialog must compute size of dialog
• width = icon width + message size + blank size
• How do we know the icon width?

int width = ourIcon.getIconWidth();

6

11

PolyMorphism

• showMessageDialog doesn't know which
icon is passed
– ImageIcon?
– MarsIcon?
– . . .?

• The actual type of anIcon is not Icon
• There are no objects of type
Icon..WHY??

12

A Variable of Interface Type

ourIcon

7

13

So…
• Which getIconWidth method is called?
• Could be

– MarsIcon.getIconWidth
– ImageIcon.getIconWidth
– . . .

• Depends on object to which anIcon reference points, e.g.

showMessageDialog(..., new MarsIcon(50))

• Polymorphism: Select different methods according to
actual object type

14

Benefits

• Stronger OO Design
• Loose coupling

– showMessageDialog decoupled from
ImageIcon

– Doesn't need to know about image processing
• Extensibility

– Client can supply new icon types

8

15

Inheritance

• Is the process of extending a class to do
something specific
– Specializing a more general class
– Extend usefulness of a specific class
– Torture students as a teaching aid

16

Example

• BufferedReader class in java
– Can read a single char
– Can read a String
– Can read n characters into a buffer

• Want to extend to allow us to read an
Integer.

9

17

public class newBR extends BufferedReader
{

public Integer readInt() throws…..

}
• Base class = super class = BufferedReader
• Derived class = subclass = newBR

• Can add variables, methods and will have all resources
of super class

18

Redefining methods

• In subclass, can redefine methods
– Called polymorphism
– May not change simple return type

• Exception derived returned types
• New to java 5

– Can not change final methods in parents
class

– Can make parent private methods, public
(less restrictive only)

10

19

Overriding vs overloading

• Overriding:
– When redefine method with exact arguments

and return type in subclass
• Overloading:

– Adding a method with the same name but
new number of arguments

– Result in 2 methods available in the subclass

20

Access rules

• Private variable in the base class are not
accessible in the derived class.

• So how do we manipulate them?

11

21

Encapsulation

• protected modifier:
– Allows access to variable/method only in

same, derived and package classes.

– Weak protection compared to public/private
modifiers

22

• A Ferrari and mini-van are both car types

• What makes them different?

• How are they the same?

12

23

Inheritance II

• Ability in a programming language to
extend a base object to specialize in some
task

• Do we want to go really fast?
• Do we want to hold family + dog ?

24

Quick question?

• Why not just copy paste specialized code?

• i.e. completely build mini-van and then
copy and chip away everything which isn't
a Ferrari ?

13

25

Use of base object

• Can talk about everything as base object
(limited but useful)

• If everything is copy-paste upgrade or bug
will have a domino effect

• Scaling…we can work on much larger set
of objects

26

Iterators
• Iterator is an object which allows you to step

through (and maybe modify) a collection of
objects in some order without knowing the
underlying representation.

• Allows loose coupling between collections and
users.

• Simplest example:
– Step through an array with a counter
– Problem: controlling multiple access from different

objects

14

27

Iterator<T> interface

• standard Iterator interface type
public interface
Iterator<LineItem>

{
boolean hasNext();
LineItem next();
void remove();

}

28

Danger

• Should next() return
– Value
– Reference

15

29

Comparing two objects

• What is the best way to compare two
different objects?

30

The Comparable Interface Type

• Collections has static sort method:

ArrayList<E> a = . . .
Collections.sort(a);

16

31

• Objects in list must implement the Comparable
interface type

public interface Comparable<T>
{
int compareTo(T other);

}

• Notice the generic type T

32

• object1.compareTo(object2) returns
– Negative number if object1 less than object2
– 0 if objects identical
– Positive number if object1 greater than object2

• sort method compares and rearranges elements
if (object1.compareTo(object2) > 0) . . .

• String class implements
Comparable<String> interface type:
lexicographic (dictionary) order

17

33

Some code
01: /**
02: A country with a name and area.
03: */
04: public class Country implements Comparable<Country>
05: {
06: /**
07: Constructs a country.
08: @param aName the name of the country
09: @param anArea the area of the country
10: */
11: public Country(String aName, double anArea)
12: {
13: name = aName;
14: area = anArea;
15: }
16:

34

testing
01: import java.util.*;
02:
03: public class CountrySortTester
04: {
05: public static void main(String[] args)
06: {
07: ArrayList<Country> countries = new

ArrayList<Country>();
08: countries.add(new Country("Uruguay", 176220));
09: countries.add(new Country("Thailand", 514000));
10: countries.add(new Country("Belgium", 30510));
11:
12: Collections.sort(countries);
13: // Now the array list is sorted by area
14: for (Country c : countries)
15: System.out.println(c.getName() + " " + c.getArea());
16: }
17: }

18

35

The Comparator interface type
• How can we sort countries by name?
• Can't implement Comparable twice!
• Comparator interface type gives added flexibility

public interface Comparator<T>
{

int compare(T obj1, T obj2);
}

• Pass comparator object to sort:

Collections.sort(list, comp);

36

• Comparator object is a function object
• This particular comparator object has no

state
• State can be useful, e.g. flag to sort in

ascending or descending order

19

37

The Comparator interface type
public class CountryComparatorByName implements

Comparator<Country>
{
public int compare(Country country1, Country

country2)
{
return

country1.getName().compareTo(country2.getName());
}

}

38

public class ComparatorTester
{

public static void main(String[] args)
{
ArrayList<Country> countries = new ArrayList<Country>();
countries.add(new Country("Uruguay", 176220));
countries.add(new Country("Thailand", 514000));
countries.add(new Country("Belgium", 30510));
Comparator<Country> comp = new CountryComparatorByName();
Collections.sort(countries, comp);

// Now the array list is sorted by area
for (Country c : countries)

System.out.println(c.getName() + " " + c.getArea());
}

}

20

39

Anonymous Classes
• In general No need to name objects that are used only once

Collections.sort(countries,
new CountryComparatorByName());

Comparator<Country> comp = new
Comparator<Country>()
{

public int compare(Country country1, Country
country2)

{
return

country1.getName().compareTo(country2.getName());
}

};

40

• anonymous new expression:
– defines anonymous class that implements

Comparator
– defines compare method of that class
– constructs one object of that class

• Cryptic syntax for very useful feature

21

41

Example
modeling.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent evt) {

try {
if (update_all_labels == true) {

42

public interface ActionListener
extends EventListener

• The listener interface for receiving action events.
The class that is interested in processing an
action event implements this interface, and the
object created with that class is registered with a
component, using the component's
addActionListener method. When the action
event occurs, that object's actionPerformed
method is invoked.

void actionPerformed(ActionEvent
e)

22

43

Java Frame Class
• Frame window has decorations

– title bar
– close box
– provided by windowing system

JFrame frame = new JFrame();
frame.pack();
frame.setDefaultCloseOperation(JFrame
.EXIT_ON_CLOSE);

frame.setVisible(true);

44

Layout Managers

• User interfaces made up of components
• Components placed in containers
• Container needs to arrange components
• Swing doesn't use hard-coded pixel coordinates
• Advantages:

– Can switch "look and feel"
– Can internationalize strings

• Layout manager controls arrangement

23

45

Basic Managers
• FlowLayout:

– left to right, start new row when full
• BoxLayout:

– left to right or top to bottom
• BorderLayout:

– 5 areas, Center, North, South, East, West
• GridLayout:

– grid, all components have same size
• GridBagLayout:

– complex, like HTML table

46

24

47

Adding components
• Construct components
JButton helloButton = new JButton("Say Hello");

• Set frame layout
frame.setLayout(new FlowLayout());

• Add components to frame
frame.add(helloButton);

48

09 JFrame frame = new JFrame();
10: JButton helloButton = new JButton("Say Hello");
11: JButton goodbyeButton = new JButton("Say Goodbye");
12:
13: final int FIELD_WIDTH = 20;
14: JTextField textField = new JTextField(FIELD_WIDTH);
15: textField.setText("Click a button!");
16:
17: frame.setLayout(new FlowLayout());
18:
19: frame.add(helloButton);
20: frame.add(goodbyeButton);
21: frame.add(textField);
22:
23: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
24: frame.pack();
25: frame.setVisible(true);

25

49

Reacting to user input
• Previous code buttons don't have any effect
• Add listener object(s) to button
• Belong to class implementing ActionListener interface

type

public interface ActionListener
{

int actionPerformed(ActionEvent event);
}

• Listeners are notified when button is clicked

50

Actions
• Add action code into actionPerformed method
• Gloss over routine code

helloButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent event)
{

textField.setText("Hello, World");
}

});

• When button is clicked, text field is set

26

51

Back to scopes

• Remarkable: Inner class can access
variables from enclosing scope
e.g. textField

• Can access enclosing instance fields, local
variables

• Local variables must be marked final
final JTextField textField = ...;

52

How to react
• Constructor attaches listener:

helloButton.addActionListener(listener);

• Button remembers all listeners
• When button clicked, button notifies listeners

listener.actionPerformed(event);

• Listener sets text of text field

textField.setText("Hello, World!");

27

53

Related work
• Write helper method that constructs objects
• Pass variable information as parameters
• Declare parameters final

public static ActionListener createGreetingButtonListener(
final String message)

{
return new

ActionListener()
{

public void actionPerformed(ActionEvent event)
{

textField.setText(message);
}

};
}

54

Low Level Java Drawing

• All drawing done on graphic context
objects

• Area to draw on
• It is instantiated to the paint() or update()

method

28

55

Coordinate System
• (0,0) on top left corner
• X increase to right
• Y increase downwards
• (0,object.getwidth()) is upper right corner

X

Y

56

Drawing Shapes
• paintIcon method receives graphics context of type Graphics
• Actually a Graphics2D object in modern Java versions

public void paintIcon(Component c, Graphics g, int
x, int y)

{
Graphics2D g2 = (Graphics2D)g;
. . .
}

• Can draw any object that implements Shape interface

Shape s = . . .;
g2.draw(s);

29

57

Next Time

• Do Reading (through 5.4)

• We will do low level paint and review for
midterm next class

