
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #10
Feb 16

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Advanced recursive tricks
• Divide and conquer
• Interfaces
• More graphics

• Reading : background book on recursion
and chapter 4

2

Announcements

• Homework 2 out….the earlier you start the
better prepared you will be for the midterm

Issues

3

From last class

• Can use recursion to solve some problems
– Rule: there is nothing special about

recursion…we can solve the same problem
using a set of loops

• Should be aware of overhead of running
the problem in a recursion fashion

• Remember 4 rules

Reminder

• Factorial recursion definition:
public int fact(n) {
If(n <1)

return 1;
else

return n*fact(n-1);
}

4

Can we do better?

• Idea, instead of waiting for the results so
we can complete the call, end the
recursion with a complete line of code i.e.
that is free from local values

public int fact2(int n , int results){
if(n<1)

return results
else

return fact2(n-1,n*results)
}

Start with: fact2(n,1) (would use helper function
with one arg for encapsulation

5

• How to do fib2?

• Will show fib1, and fib2 code

6

Divide and conquer

• We discussed bubble sort in last class
• Time to run = n^2
• Reason: we need to compare everything

pair n times
• Can we do better? Is there a way of not

having to compare everything like that

Question

• Has anyone heard of RANDSORT?

7

Random sort

• Take the item to sort

• Throw them in the air

• Pick them up and check if they are in order

• Actually very useful for specific tasks

Quick sort

• Idea: choose a random item
• Make 2 piles, everything less is on one

side, everything greater on other side.

• When done 1st step, have found the spot
fir the current item.

• Recursively call on each pile

8

No code!

• Quicksort(list)
• Choose pivot
• Run through list
• Have left, pivot, right piles
• Quicksort(left) + pivot + quicksort(right) is

the sorted list.

Interface
• We’ve mentioned interfaces before
• We want to define some behavior that anyone

who wants to behave in a certain way will
indicate it by saying

Impliments interfaceYYYY
• It defines methods which need to be

implemented that is nothing is implemented in
interface class definition file

• Implementing class must supply implementation
of all methods

9

Idea of an icon

• Want something which hints at some idea
• Small picture

The Icon Interface Type

public interface Icon
{
int getIconWidth();
int getIconHeight();
void paintIcon(Component c,
Graphics g, int x, int y)

}

10

Designing classes

• Remember that generally the interface is
based on some design we have in mind

• Design can change

• What is the consequence: if you add a
method OP() to this interface?

JOptionPane

• In general we work with window like
containers and components

• Very useful to have a prepackaged class
to quick display or fetch information

• JOptionPane

11

Example

• Use JOptionPane to display message:
JOptionPane.showMessageDialog(null, "Hello,

World!");

• Can you find the icon??

More complex

• Can specify an image file
JOptionPane.showMessageDialog(
null,
"Hello, World!",
"Message",
JOptionPane.INFORMATION_MESSAGE,
new ImageIcon("globe.gif"));

12

Displaying an Image
• What if we don't want to generate an image file?
• Fortunately, can use any class that implements Icon

interface type
• ImageIcon is one such class
• Easy to supply your own class

Graphics

• 2 approaches to using graphics in Java
1. Objects

Use JLabel and place on the
screen, Java takes care of all drawing

2. Raw Canvas
Java hands you a way of

drawing on a raw canvas object, use
Graphics object to manipulate.

13

Marsicon.java
import java.awt.*;
02: import java.awt.geom.*;
03: import javax.swing.*;
04:
05: /**
06: An icon that has the shape of the

planet Mars.
07: */
08: public class MarsIcon implements Icon
09: {
10: /**
11: Constructs a Mars icon of a given

size.
12: @param aSize the size of the icon
13: */
14: public MarsIcon(int aSize)
15: {
16: size = aSize;
17: }
18:
19: public int getIconWidth()
20: {

21: return size;
22: }
23:
24: public int getIconHeight()
25: {
26: return size;
27: }
28:
29: public void paintIcon(Component c,

Graphics g, int x, int y)
30: {
31: Graphics2D g2 = (Graphics2D) g;
32: Ellipse2D.Double planet = new

Ellipse2D.Double(x, y,
33: size, size);
34: g2.setColor(Color.RED);
35: g2.fill(planet);
36: }
37:
38: private int size;
39: }

