CS1007: Object Oriented Design
and Programming in Java

Lecture #10
Feb 16

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Advanced recursive tricks
Divide and conquer
Interfaces

More graphics

Reading : background book on recursion
and chapter 4

Announcements

« Homework 2 out....the earlier you start the
better prepared you will be for the midterm

Issues

From last class

« Can use recursion to solve some problems

— Rule: there is nothing special about
recursion...we can solve the same problem
using a set of loops

« Should be aware of overhead of running
the problem in a recursion fashion

e Remember 4 rules

Reminder

» Factorial recursion definition:
public int fact(n) {
If(n <1)
return 1;
else
return n*fact(n-1);

Can we do better?

* Idea, instead of waiting for the results so
we can complete the call, end the
recursion with a complete line of code i.e.
that is free from local values

public int fact2(int n, int results){
if(n<1)
return results

else
return fact2(n-1,n*results)

}

Start with: fact2(n,1) (would use helper function
with one arg for encapsulation

» How to do fib2?

* Will show fibl, and fib2 code

Divide and conquer

We discussed bubble sort in last class
Time to run = N2

Reason: we need to compare everything
pair n times

Can we do better? Is there a way of not
having to compare everything like that

Question

* Has anyone heard of RANDSORT?

Random sort

Take the item to sort
Throw them in the air

Pick them up and check if they are in order

Actually very useful for specific tasks

Quick sort

Idea: choose a random item

Make 2 piles, everything less is on one
side, everything greater on other side.

When done 15t step, have found the spot
fir the current item.

Recursively call on each pile

No code!

Quicksort(list)

Choose pivot

Run through list

Have left, pivot, right piles

» Quicksort(left) + pivot + quicksort(right) is
the sorted list.

Interface

* We've mentioned interfaces before

* We want to define some behavior that anyone
who wants to behave in a certain way will
indicate it by saying

Impliments interfaceYYYY

» |t defines methods which need to be
implemented that is nothing is implemented in
interface class definition file

* Implementing class must supply implementation
of all methods

Idea of an icon

« Want something which hints at some idea
« Small picture

The Icon Interface Type

public interface Icon
{
int getlconWidth();
int getlconHeight();

void paintlcon(Component c,
Graphics g, Int x, Int y)

}

Designing classes

« Remember that generally the interface is
based on some design we have in mind

» Design can change

* What is the consequence: if you add a
method OP() to this interface?

JOptionPane

 In general we work with window like
containers and components

» Very useful to have a prepackaged class
to quick display or fetch information

» JOptionPane

10

Example

» Use JOptionPane to display message

JOptionPane.showMessageDialog(null, *"Hello,
World!");

« Can you find the icon??

\.I' } Hello, world!

Ok

More complex

» Can specify an image file

JOptionPane.showMessageDialog(

null,
"Hello, World1™, A
""Message"',

JOptionPane . INFORMAT ION_MESSAGE,
new Imagelcon(*'globe.gif™));

Hello, World!

11

Displaying an Image

What if we don't want to generate an image file?

Fortunately, can use any class that implements Icon
interface type

Imagelcon is one such class
Easy to supply your own class

E Message I?

. Hello, Mars!

Ok

Graphics

2 approaches to using graphics in Java

Objects
Use JLabel and place on the
screen, Java takes care of all drawing

Raw Canvas

Java hands you a way of
drawing on a raw canvas object, use
Graphics object to manipulate.

12

Marsicon.java

import java.awt.*;
02: import java.awt.geom.*;
03: import javax.swing.*;

04:

05: /**

06: An icon that has the shape of the
planet Mars.

07: */

08: public class Marslcon implements lIcon

09: {

10: /**

11: Constructs a Mars icon of a given
size.

12: (@param aSize the size of the icon
13: */

14: public Marslcon(int aSize)
15: {

16: size = aSize;

17: 3}

18:

19: public int getlconWidth()
20: {

21: return size;

22: }

23:

24: public int getlconHeight()

25: {

26: return size;

27: }

28:

29: public void paintlcon(Component c,
Graphics g, int x, int y)

30: {

31: Graphics2D g2 = (Graphics2D) g;

32: Ellipse2D.Double planet = new
Ellipse2D.Double(x, vy,

33: size, size);

34: g2.setColor(Color.RED);

35: g2.fill(planet);

36: }

37:

38: private int size;

39: }

13

