CS1007: Object Oriented Design
and Programming in Java

Lecture #6
Sept 22

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Feedback
Some Theory
Encapsulation
Inheritance
Interface
Class design

Reading
— Chapter 3-3.4

Feedback

UML design requirements on the HWs?
How many diagrams /use cases necessary?
Java inheritance

Javadoc
Extend class
User input

Running the example

— javac *.java

— java MailSystemTester

Announcements

Lab components.
— Hands on assignments
— Thursdays (every other)
— Will need CS account
» www.cs.columbia.edu/crf/accounts




Abstraction

« Process of picking out common features of
an object

* Focus on essentials
* Eliminate details

Example

 ATM Machine

» What is an abstract idea of an ATM ?

Encapsulation

« Hide implementation details

« Data access always done through
methods

« 2 levels of protection
— State can not be changed directly from
outside
— Implementation can change without affecting
users

» So how would the ATM machine object be
described from an outside point of view?




Example 2

» Date class in standard Library

* Many programs manipulate dates such as
"Saturday, February 3, 2001"

* Date class:

Date now = new Date();
// constructs current date/time
System.out._printIn(now.toString());
/I prints date such as
/I Sat Feb 03 16:34:10 PST 2001

Example 2

» Representing the date.

 Date class encapsulates point in time

* What is the best way?

Date class methods

boolean after(Date other) Tests if this date is after the specified date

boolean before(Date other) | Tests if this date is before the specified date

int compareTo(Date other) | Tells which date came before the other

long getTime() Returns milliseconds since the epoch
(1970-01-01 00:00:00 GMT)

void setTime(long n) Sets the date to the given number of milliseconds
since the epoch

Some deprecated methods

int getDay() Deprecated. As of JDK version
1.1, replaced by
Calendar.get(Calendar.DAY_OF_WEEK).

int getHours()
int getMinutes()
int getMonth()
int getSeconds()

Deprecated. As of JDK version 1.1, replaced
by Calendar.get(Calendar.SECOND).




L]

L]

Date Class

Deprecated methods were re-thought

Date class methods supply total ordering
on Date objects

Convert to scalar time measure

Note that before/after not strictly
necessary

(Presumably introduced for convenience)

"I'll see you on 996,321,998,346." doesn’t
really work

Think in OO

* |s Date the correct idea?
* What are the limitations?

* i.e. what are the advantages and
disadvantages of Date class

The GregorianCalendar Class

The Date class doesn't measure months,
weekdays, etc.

That's the job of a calendar

A calendar assigns a hame to a point in
time

Many calendars in use:

— Gregorian

— Contemporary: Hebrew, Arabic, Chinese

— Historical: French Revolutionary, Mayan

Java Date Handling

Gregorian
Calendar

Date [ U] Calendar




Designing a Day Class

Use the standard library classes, not this
class, in your own programs

Day encapsulates a day in a fixed location
No time, no time zone
Use Gregorian calendar

Goal of Day Class

» Answer questions such as

» How many days are there between now
and the end of the year?

» What day is 100 days from now?

CRC Card

Day

refate calendar days to day counts

Design Phase

daysFrom computes number of days between two days:
int n = today.daysFrom(birthday);

addDays computes a day that is some days away from a given day:
Day later = today.addDays(999);

Mathematical relationship:

d.addDays(n) .daysFrom(d) == n
d1.addDays(d2.daysFrom(d1)) == d2

Clearer when written with "overloaded operators":

@+n)-d==n
dl + (d2 - d1) == d2

Constructor Date(int year, int month, int date)
getYear, getMonth, getDate acccesors




Implementation

« Straightforward implementation:

private int year
private int month
private int date

« addDays/daysBetween tedious to implement
— April, June, September, November have 30 days
— February has 28 days, except in leap years it has 29 days
— All other months have 31 days
— Leap years are divisible by 4, except after 1582, years divisible by 100
but not 400 are not leap years
— There is no year O; year 1 is preceded by year -1

— In the switchover to the Gregorian calendar, ten days were dropped:
October 15, 1582 is preceded by October 4

Day Code

public Day(int aYear, int aWonth, int aDate)

year = aYear:
month = aMonth;
date = aDate;
3

private int year;
private int month
private int date;

private static final int[] DAYS_PER_MONTH
= { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

private static fi
private static
private static
private static final

1 int GREGORIAN_START_YEAR = 1582;
1 int GREGORIAN_START_MONTH
1
1

int GREGORIAN_START_DAY = 1!
int JULIAN_END_DAY = 4;

private static final
private static
private static final

int JANUARY = 1;
nt FEBRUARY H
DECEMBER = 12;

Day Code

private Day nextDay()
112: {

113: inty = year;
114: int m = month:

115: int d = date;

116:

117: if (y == GREGORIAN_START_YEAR
118: & m == GREGORIAN_START_NONTH
119: & d == JULIAN_END_DAY)
1202 d = GREGORIAN_START_DAY:

121: else if (d < daysPeriionth(y, m))
122: dee:

123: else

124: I

125: Il

1261 me-

127: i (n > DECEMBER)

128:

129: m = JANUARY;

130: yoe:

131: i (y == 0) y++;

132: ¥

133: 3

134: return new Day(y, m, d);

135 )

private static int daysPerMonth(int y, int m)
{
int days = DAYS_PER_MONTH[m - 1];
if (m == FEBRUARY && isLeapYear(y))
days++;
return days;

private static boolean isLeapYear(int y)

if (y % 4 != 0) return false;

if (y < GREGORIAN_START_YEAR) return true;
return (y % 100 !=0) || (y % 400 == 0);

}




Tester

01: public class DayTester

02: {

03: public static void main(String[] args)

04: {

05: Day today = new Day(2001, 2, 3);
//February 3, 2001

06: Day later = today.addDays(999);

07: System.out.printin(later.getYear()

08: + "-" + later.getMonth()

09: + "-" + later.getDate());

10: System.out.printin(later.daysFrom(today));
// Prints 999

11: 3

12: }

Another idea

* For greater efficiency, use Julian day
number

» Used in astronomy

» Number of days since Jan. 1, 4713 BCE
* May 23, 1968 = Julian Day 2,440,000
 Greatly simplifies date arithmetic

Code

public Day(int aYear, int aMonth, int aDate)
{

julian = toJulian(aYear, aMonth, aDate);

}

private int julian;

Code

private static int toJulian(int year, int month, int date)

int jy = year;
if (year < 0) jy++;
int jm = month;

it (month > 2) jm++;

3
int jul = (int) (Java.lang.Math.floor(365.25 * jy)
+ java.lang.Math.floor(30.6001 * jm) + date + 1720995.0);
int IGREG = 15 + 31 * (10 + 12 * 1582);
// Gregorian Calendar adopted Oct. 15, 1582
if (date + 31 * (month + 12 * year) >= IGREG)
// Change over to Gregorian calendar

{
int ja = (int) (0.01 * jy);
jul += 2 - ja + (int) (0.25 * ja);

return jul;




Any other ideas?

Why should you encapsulate?

Even a simple class can benefit from different
implementations

Users are unaware of implementation

Public instance variables would have blocked
improvement

— Can't just use text editor to replace all

d.year

with

d.getYear()

— How about

d.year++?

— d = new Day(d.getDay(), d.getMonth(), d.getYear() + 1)
— Ugh--that gets really inefficient in Julian representation
Don't use public fields, even for "simple" classes

Accessors and Mutators

Mutator: Changes object state

Accessor: Reads object state without
changing it

Day class has no mutators!

Class without mutators is immutable
String is immutable

Date and GregorianCalendar are mutable

Don't Supply a Mutator for every
Accessor

Day has getYear, getMonth, getDate accessors
Day does not have setYear, setMonth,setDate mutators

« These mutators would not work well

~ Example:

Day deadline = new Day(2001, 1, 31);
deadline.setMonth(2); // ERROR
deadline setDate(28);

— Maybe we should call setDate first?

Day deadline = new Day(2001, 2, 28);
deadline.setDate(31); // ERROR
deadline.setMonth(3);

GregorianCalendar implements confusing rollover.
— Silently gets the wrong result instead of error.
Immutability is useful




Sharing Mutable References

« References to immutable objects can be freely shared
» Don't share mutable references

class Employee

{

public String getName() { return name; }
public double getSalary() { return salary; }
public Date getHireDate() { return hireDate; }
private String name;

private double salary;

private Date hireDate;

« Pitfall:

Employee harry = . . _;

Date d = harry.getHireDate();
d.setTime(t); // changes Harry"s statell!

* Remedy: Use clone

public Date getHireDate()
{

}

return (Date)hireDate.clone();

harey = —.

| Employee

name = "harry”
hireDate

Final Instance Fields

» Good idea to mark immutable instance
fields as final

private final int day;

« final object reference can still refer to
mutating object

private final ArrayList elements;

< elements can't refer to another array list

» The contents of the array list can change




Separating Accessors and
Mutators

« If we call a method to access an object, we don't expect
the object to mutate

¢ Rule of thumb:
Mutators should return void

« Example of violation:

Scanner in = . . _;
String s = in.next(Q);

¢ Yields current token and advances iteration
« What if | want to read the current token again?

« Better interface:

String getCurrent();
void next();

« Even more convenient:

String getCurrent();
String next(); // returns current

 Refine rule of thumb: . ) .
Mutators can return a convenience value, provided there is also an
accessor to get the same value

Side Effect

« Side effect of a method: any observable state change
« Mutator: changes implicit parameter
« Other side effects: change to

— explicit parameter
— static object

« Avoid these side effects--they confuse users
* Good example, no side effect beyond implicit parameter

a.addAl1(b)

mutates a but not b

Side Effects Il

« Date formatting (basic):

SimpleDateFormat formatter = . . _;
String dateString = "January 11, 2012";
Date d = formatter.parse(dateString);

« Advanced:

FieldPosition position = . . .;
Date d = formatter.parse(dateString, position);

« Side effect: updates position parameter
« Design could be better: add position to formatter state

10



« Avoid modifying static objects
« Example: System.out
« Don't print error messages to System.out:

if (newMessages.isFull())
System.out.printIn(’'Sorry--no space™);

* Your classes may need to run in an environment without
System.out

* Rule of thumb: Minimize side effects beyond implicit
parameter

Next Time

» Do homework assignment
» Read chapter 3-3.5

11



