
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #5
Sept 20

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Feedback
• More UML and OOD

• Reading
– Chapter 2

• Next
– Chapter 3

2

Feedback

• Lots of UML confusion

• Class design issues

• Why cs accounts
– Will need it for lab class (to be announced)
– Allow you to gain extra skills outside of basic

1007

UML

• Why do we model?
– Provide structure for problem solving
– Experiment to explore multiple solutions
– Furnish abstractions to manage complexity
– Decrease development costs
– Manage the risk of mistakes

• Graphical Approach
– Picture is worth 1000 words

3

UML Building Blocks
• model elements (classes, interfaces, components, use

cases, etc.)
• relationships (associations, generalization,

dependencies, etc.)
• diagrams (class diagrams, use case diagrams,

interaction diagrams, etc.)

• Simple building blocks are used to create large, complex
structures
– elements, bonds and molecules in chemistry
– components, connectors and circuit boards in hardware

UML Relationships
1. Proper operation of one depends

on another

2. Has-a part-whole

1. Student->department

2. Faculty member->dept

3. Dept ->college

3. Is-a

4. One doesn’t exist without the
other

4

Java defintions

• When class X extends Y
– X is a subclass
– Y is a superclass

• When interface A extends Interface B
– A is a subinterface
– B is a superinterface

• When G implements interface B
– G is an implementation of B
– B is an interface of class G

• Class diagrams – static relationships
• Dynamic relationship – interaction

between objects and ordering of events
– Sequence – time order layout of events
– State diagrams – flow of control

• FSM – Finite State Machines
• Event – is a occurrence that triggers a state

transition
• Nested – diagrams can contain other diagrams

5

Use cases

• Consists of interactions between the
system and “actors” and their relationships

• Describes what the system does (not how)
• High level sketch

ME

6

Use case

ME

Student

Dean

Get Roster

Check Grades

Enter Grades

Verify Grades

Validate User

User

From Last Class

• Middle of documenting a voice mail
system

7

Voice Mail System

• Use text for voice, phone keys, hangup
• 1 2 ... 0 # on a single line means key
• H on a single line means "hang up"
• All other inputs mean voice
• In GUI program, will use buttons for keys

(see ch. 4)

Reach an Extension
1. User dials main number of system
2. System speaks prompt

Enter mailbox number followed by #

3. User types extension number
4. System speaks

You have reached mailbox xxxx.
Please leave a message now

8

Leave a Message

1. Caller carries out Reach an Extension
2. Caller speaks message
3. Caller hangs up
4. System places message in mailbox

Log In
1. Mailbox owner carries out Reach an

Extension
2. Mailbox owner types password and # (Default

password = mailbox number. To change, see
Change the Passcode)

3. System plays mailbox menu:

Enter 1 to retrieve your messages.
Enter 2 to change your passcode.
Enter 3 to change your greeting.

9

Retrieve Messages
1. Mailbox owner carries out Log in
2. Mailbox owner selects "retrieve messages" menu option
3. System plays message menu:

Press 1 to listen to the current message
Press 2 to delete the current message
Press 3 to save the current message
Press 4 to return to the mailbox menu

4. Mailbox owner selects "listen to current message"
5. System plays current new message, or, if no more new messages, current

old message.
6. Note: Message is played, not removed from queue
7. System plays message menu
8. User selects "delete current message". Message is removed.
9. Continue with step 3.

Change Greeting

1. Mailbox owner carries out Log in
2. Mailbox owner selects "change greeting"

menu option
3. Mailbox owner speaks new greeting
4. Mailbox owner presses #
5. System sets new greeting

10

Change Passcode

• Mailbox owner carries out Log in
• Mailbox owner selects "change passcode"

menu option
• Mailbox owner dials new passcode
• Mailbox owner presses #
• System sets new passcode

CRC Cards: Mailbox

11

CRC Cards: MessageQueue

CRC Cards: MailSystem

12

Telephone

• Who interacts with user?
• Telephone takes button presses, voice

input
• Telephone speaks output to user

13

Connection

• With whom does Telephone communicate
• With MailSystem?
• What if there are multiple telephones?
• Each connection can be in different state

– (dialing, recording, retrieving messages,...)
• Should mail system keep track of all connection

states?
• Better to give this responsibility to a new class

Connection

14

Analysis: Leave Message
1. User dials extension. Telephone sends number to Connection

(Add collaborator Telephone to Connection)
2. Connection asks MailSystem to find matching Mailbox
3. Connection asks Mailbox for greeting

(Add responsibility "manage greeting" to Mailbox,
add collaborator Mailbox to Connection)

4. Connection asks Telephone to play greeting
5. User speaks greeting. Telephone asks Connection to record it.

(Add responsibility "record voice input" to Connection)
6. User hangs up. Telephone notifies Connection.
7. Connection constructs Message

(Add card for Message class,
add collaborator Message to Connection)

8. Connection adds Message to Mailbox

15

16

Retrieve Messages
1. User types in passcode. Telephone notifies Connection
2. Connection asks Mailbox to check passcode.

(Add responsibility "manage passcode" to Mailbox)
3. Connection sets current mailbox and asks Telephone to speak menu
4. User selects "retrieve messages". Telephone passes key to Connection
5. Connection asks Telephone to speak menu
6. User selects "listen to current message". Telephone passes key to

Connection
7. Connection gets first message from current mailbox.

(Add "retrieve messages" to responsibility of Mailbox).
Connection asks Telephone to speak message

8. Connection asks Telephone to speak menu
9. User selects "save current message". Telephone passes key to

Connection
10.Connection tells Mailbox to save message

(Modify responsibility of Mailbox to "retrieve,save,delete messages")
11.Connection asks Telephone to speak menu

17

Result of Use Case Analysis

CRC Summary

• One card per class
• Responsibilities at high level
• Use scenario walkthroughs to fill in cards
• Usually, the first design isn't perfect.

– (You just saw the author's third design of the
mail system)

18

UML Class Diagram for Mail
System

• CRC collaborators yield dependencies
• Mailbox depends on MessageQueue
• Message doesn't depends on Mailbox
• Connection depends on Telephone,
MailSystem, Message, Mailbox

• Telephone depends on Connection

Dependency Relationships

19

Aggregation Relationships

• A mail system has mailboxes
• A mailbox has two message queues
• A message queue has some number of

messages
• A connection has a current mailbox.
• A connection has references to a

mailsystem and a telephone

UML Class Diagram for Voice Mail
System

20

Sequence Diagram for Use Case:
Leave a message

Interpreting a Sequence Diagram

• Each key press results in separate call to dial, but only
one is shown

• Connection wants to get greeting to play
• Each mailbox knows its greeting
• Connection must find mailbox object:
Call findMailbox on MailSystem object
• Parameters are not displayed (e.g. mailbox number)
• Return values are not displayed (e.g. found mailbox)
• Note that connection holds on to that mailbox over

multiple calls

21

Sequence Diagram: Retrieve
messages

Connection State Diagram

22

Java Example
01: /**
02: A message left by the caller.
03: */
04: public class Message
05: {
06: /**
07: Construct a Message object.
08: @param messageText the message text
09: */
10: public Message(String messageText)
11: {
12: text = messageText;
13: }
14:
15: /**
16: Get the message text.
17: @return message text
18: */
19: public String getText()
20: {
21: return text;
22: }
23:
24: private String text;
25: }

For MessageQueue
36: /**
37: Get the total number of messages in the queue.
38: @return the total number of messages in the queue
39: */
40: public int size()
41: {
42: return queue.size();
43: }
44:
45: /**
46: Get message at head.
47: @return message that is at the head of the queue, or null
48: if the queue is empty
49: */
50: public Message peek()
51: {
52: if (queue.size() == 0) return null;
53: else return queue.get(0);
54: }
55:
56: private ArrayList<Message> queue;
57: }

23

Tester
01: import java.util.Scanner;
02:
03: /**
04: This program tests the mail system. A single phone
05: communicates with the program through

System.in/System.out.
06: */
07: public class MailSystemTester
08: {
09: public static void main(String[] args)
10: {
11: MailSystem system = new MailSystem(MAILBOX_COUNT);
12: Scanner console = new Scanner(System.in);
13: Telephone p = new Telephone(console);
14: Connection c = new Connection(system, p);
15: p.run(c);
16: }
17:
18: private static final int MAILBOX_COUNT = 20;
19: }

Voilet

• Demo of UML system

24

Next Time

• Considerations when choosing and
designing classes

