
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #4
Sept 15

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Feedback
• Object Oriented Design Process.
• CRC
• UML
• Example: VoiceMail System

• Reading chapter 2-2.5
Next: 2.5-

2

Announcements

• Please make sure to note : HW due: sept
27

• Bill Gates will be visiting on Oct 13, tickets
will be made available if you are interested
(fcfs).

• Beginning Monday, I will try to post weekly
slides for the week (ahead of classes).

Feedback

• Some confusion about exceptions
– Will address it in class

• Slides

• Pace

• Xserver setup
– Demo in class

3

Exceptions

• Tool to handle error during program run
– Exception == exceptional event

– Idea: when an error occurs, a method can
create an Object representing the error and
hand it to the run time system

– The runtime system now tries to find someone
to handle the particular error, it uses the call
stack to find a handler

Exception handlers

• Are defined by your catch expression
• If a specific method doesn’t know how to

handle the specific exception, it forwards it
up the stack

• Remember: can have multiple catch
blocks one after other
– Exceptions have a hierarchy, they will be

evaluated from highest to lowest, so the catch
blocks must be in reverse order.

4

The birth of an exception

• You might use a method which might
throw an exception

• You might create a method which creates
and exception

• Your code might trigger an exception

5

InvalidAccountException
public class InvalidAccountException extends Exception {

public InvalidAccountException (String message)
{

super(message);
}

}

Your method
public boolean checkBalance(int account) throws

InvalidAccountException{

if(account==null || account < 1){
throw new InvalidAccountException(“Bad Account
Number”);

}

... ...
}

6

Chaining Exceptions
try {

...

} catch (IOException e) {
throw new SampleException("Other IOException", e);

}

Point

• Can deal with the problem
– Ask user for help
– Figure out what should be done
– Log the error
– Print a trace to debug
– Die (ARGHHHHHH!)

7

Tips

• In a general sense try, catch blocks
impose some overhead to the resulting
code

• Although can enclose all your code in
some try, catch block its not a good idea

• Need to decide at what point, which errors
can occur, and what the appropriate
response will be

Ahead

• Object Oriented Design

8

Program Design

• Analysis
• Design
• Implementation

Analysis Phase

• Functional Specification

– Completely defines tasks to be solved
– Free from internal contradictions
– Readable both by domain experts and

software developers
– Reviewable by diverse interested parties
– Testable against reality

9

Design Phase
• Goals

– Identify classes
– Identify behavior of classes
– Identify relationships among classes

• Artifacts

– Textual description of classes and key methods
– Diagrams of class relationships
– Diagrams of important usage scenarios
– State diagrams for objects with rich state

Implementation Phase

• Implement and test classes
• Combine classes into program
• Avoid "big bang" integration
• Prototypes can be very useful

10

• Object: Three characteristic concepts

– State
• Information held by the object

– Behavior
• Set of operations supported

– Identity
• Unique property setting one object apart from another

• Class: Collection of similar objects

Problem 1:

• Design a voicemail system for use in your
typical cellphone.

• How would the requirements look like?
• What would be a typical session?
• What modules are involved?

11

Identifying Classes in design
• Rule of thumb: Look for nouns in problem

description

• Mailbox
• Message
• User
• Passcode
• Extension
• Menu

When defining classes

• Focus on concepts, not implementation

• ????? stores messages
– Lets say a messageQueue

• Don't worry yet how the queue is
implemented

12

Categories

• Tangible Things
• Agents
• Events and Transactions
• Users and Roles
• Systems
• System interfaces and devices
• Foundational Classes

Identifying Responsibilities

• Rule of thumb: Look for verbs in problem
description

• Behavior of MessageQueue:

• Add message to tail
• Remove message from head
• Test whether queue is empty

13

OO Design

• OO Principle: Every operation is the
responsibility of a single class

• Example:
– Add message to mailbox

• Who is responsible:
– Message or Mailbox?

Relationship

• Dependency ("uses")
• Aggregation ("has")
• Inheritance ("is")

14

Dependancy

• C depends on D: Method of C
manipulates objects of D

Example: Mailbox depends on Message
• If C doesn't use D, then C can be

developed without knowing about D

Independent operations
• Minimize dependency:

– reduce having to relay on anything set in stone

• Example: Replace
void print() // prints to System.out
• with

String getText() // can print anywhere

• Removes dependence on System, PrintStream

15

Aggregation

• Object of a class contains objects of
another class

• Example: MessageQueue aggregates
Messages

• Example: Mailbox aggregates
MessageQueue

• Implemented through instance fields

Relationships
• 1 : 1 or 1 : 0...1 relationship:

public class Mailbox
{

. . .
private Greeting myGreeting;

}

• 1 : n relationship:

public class MessageQueue
{

. . .
private ArrayList<Message> elements;

}

16

Inheritance
• More general class = superclass
• More specialized class = subclass
• Subclass supports all method interfaces of

superclass (but implementations may differ)
• Subclass may have added methods, added state
• Subclass inherits from superclass
• Example:

– ForwardedMessage inherits from Message
– Greeting does not inherit from Message (Can't store

greetings in mailbox)

Use Cases

• Analysis technique
• Each use case focuses on a specific scenario
• Use case = sequence of actions
• Action = interaction between actor and computer

system
• Each action yields a result
• Each result has a value to one of the actors
• Use variations for exceptional situations

17

Example case
• Leave a Message

1. Caller dials main number of voice mail system
2. System speaks prompt

• Enter mailbox number followed by #

3. User types extension number
4. System speaks

• You have reached mailbox xxxx. Please leave a message now

5. Caller speaks message
6. Caller hangs up
7. System places message in mailbox

Variations

• user enters invalid extension number
– What do you do?
– Who does it?

• What if user hangs up instead of using
message?

• How many attempts at password?

18

CRC Cards

• CRC = Classes, Responsibilities,
Collaborators

• Developed by Beck and Cunningham
• Use an index card for each class
• Class name on top of card
• Responsibilities on left
• Collaborators on right

CRC

MailBox

MessageQueue
•Manage Passcode

•Manage Greeting

•Manage New/saved
messages

• Responsibilities should
be high level

• 1 - 3 responsibilities per
card

• Collaborators are for
the class, not for each
responsibility

19

Example

• Use case: "Leave a message"
• Caller connects to voice mail system
• Caller dials extension number
• "Someone" must locate mailbox
• Neither Mailbox nor Message can do this
• New class: MailSystem
• Responsibility: manage mailboxes

UML

• UML = Unified Modeling Language
• Unifies notations developed by Booch,

Rumbaugh, Jacobson
• Many diagram types
• We'll use three types:

– Class Diagrams
– Sequence Diagrams
– State Diagrams

20

Class Diagrams

• Rectangle with class name
• Optional compartments

– Attributes
– Methods

• Include only key attributes and methods

Class Diagram

21

UML Relationships

Multiplicities

• any number (0 or more): *
• one or more: 1..*
• zero or one: 0..1
• exactly one: 1

22

Composition

• Special form of aggregation
• Contained objects don't exist outside container
• Example: message queues permanently

contained in mail box

Association

• Some designers don't like aggregation
• More general association relationship
• Association can have roles

23

Association II
• Some associations are bidirectional
• Can navigate from either class to the other
• Example: Course has set of students, student has set of

courses
• Some associations are directed
• Navigation is unidirectional
• Example: Message doesn't know about message queue

containing it

Interface Types

• Interface type describes a set of methods
• No implementation, no state
• Class implements interface if it implements

its methods
• In UML, use stereotype «interface»

24

Tip

• Use UML to inform, not to impress
• Don't draw a single monster diagram
• Each diagram must have a specific

purpose
• Omit inessential details

Sequence Diagrams

• Each diagram shows dynamics of scenario
• Object diagram: class name underlined

25

Self call

Object Construction

26

State Diagram

Design Docs
• Recommendation: Use Javadoc comments
• Leave methods blank

/**
Adds a message to the end of the new messages.
@param aMessage a message

*/
public void addMessage(Message aMessage)
{
}

• Don't compile file, just run Javadoc
• Makes a good starting point for code later

27

Voice Mail System

• Use text for voice, phone keys, hangup
• 1 2 ... 0 # on a single line means key
• H on a single line means "hang up"
• All other inputs mean voice
• In GUI program, will use buttons for keys

(see ch. 4)

Reach an Extension
1. User dials main number of system
2. System speaks prompt

Enter mailbox number followed by #

3. User types extension number
4. System speaks

You have reached mailbox xxxx.
Please leave a message now

28

Leave a Message

1. Caller carries out Reach an Extension
2. Caller speaks message
3. Caller hangs up
4. System places message in mailbox

Next time

• Read
• Make sure you are making headway in the

homework
• Download UML designer and try to play

with it.

