CS1007: Object Oriented Design
and Programming in Java

Lecture #4
Sept 15

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Feedback

Object Oriented Design Process.
CRC

UML

Example: VoiceMail System

Reading chapter 2-2.5
Next: 2.5-

Announcements

» Please make sure to note : HW due: sept
27

« Bill Gates will be visiting on Oct 13, tickets
will be made available if you are interested
(fcfs).

« Beginning Monday, | will try to post weekly
slides for the week (ahead of classes).

Feedback

Some confusion about exceptions
— Will address it in class

Slides

Pace

Xserver setup
— Demo in class

Exceptions

* Tool to handle error during program run
— Exception == exceptional event

— Idea: when an error occurs, a method can
create an Object representing the error and
hand it to the run time system

— The runtime system now tries to find someone
to handle the particular error, it uses the call
stack to find a handler

Exception handlers

» Are defined by your catch expression

* If a specific method doesn’t know how to
handle the specific exception, it forwards it
up the stack

« Remember: can have multiple catch
blocks one after other
— Exceptions have a hierarchy, they will be

evaluated from highest to lowest, so the catch
blocks must be in reverse order.

Method where
Throws exception =~ | @rror occurred

Looking for
appropriate handler
Method without an
Forwards exception ~"| exception handler
Looking for

appropriate handler

Method that has an

Catches some | axeaption handler
other exception

main

The birth of an exception

* You might use a method which might
throw an exception

* You might create a method which creates
and exception

» Your code might trigger an exception

InvalidAccountException

public class InvalidAccountException extends Exception {

public InvalidAccountException (String message)

{
}

super(message) ;

Your method

public boolean checkBalance(int account) throws
Inval idAccountException{

if(account==null |] account < 1){

throw new InvalidAccountException(“Bad Account
Number’”);

Chaining Exceptions

try {

} catch (10Exception e) {
throw new SampleException(*'Other I10Exception', €);

}

Point

« Can deal with the problem
— Ask user for help
— Figure out what should be done
— Log the error
— Print a trace to debug
— Die (ARGHHHHHH!)

Tips

* In a general sense try, catch blocks
impose some overhead to the resulting
code

» Although can enclose all your code in
some try, catch block its not a good idea

* Need to decide at what point, which errors
can occur, and what the appropriate
response will be

Ahead

» Object Oriented Design

Program Design

» Analysis
* Design
* Implementation

Analysis Phase

» Functional Specification

— Completely defines tasks to be solved
— Free from internal contradictions

— Readable both by domain experts and
software developers

— Reviewable by diverse interested parties
— Testable against reality

Design Phase

* Goals

— ldentify classes
— ldentify behavior of classes
— Identify relationships among classes

* Artifacts

Textual description of classes and key methods
Diagrams of class relationships

Diagrams of important usage scenarios

State diagrams for objects with rich state

Implementation Phase

Implement and test classes
Combine classes into program
Avoid "big bang" integration
Prototypes can be very useful

» Object: Three characteristic concepts

— State

« Information held by the object
— Behavior

 Set of operations supported

— Identity
» Unique property setting one object apart from another

» Class: Collection of similar objects

Problem 1:

Design a voicemail system for use in your
typical cellphone.

How would the requirements look like?
What would be a typical session?
What modules are involved?

10

ldentifying Classes in design

Rule of thumb: Look for nouns in problem
description

Mailbox
Message
User
Passcode
Extension
Menu

When defining classes

Focus on concepts, not implementation

— Lets say a messageQueue

Don't worry yet how the queue is
implemented

11

Categories

Tangible Things

Agents

Events and Transactions
Users and Roles

Systems

System interfaces and devices
Foundational Classes

|dentifying Responsibilities

Rule of thumb: Look for verbs in problem
description

Behavior of MessageQueue:
Add message to talil

Remove message from head
Test whether queue is empty

12

OO Design

* OO Principle: Every operation is the
responsibility of a single class

« Example:

— Add message to mailbox
* Who is responsible:

— Message or Mailbox?

Relationship

« Dependency ("uses")
« Aggregation ("has")
* Inheritance ("is")

13

Dependancy

 C depends on D: Method of C
manipulates objects of D

Example: Mailbox depends on Message

 |If C doesn't use D, then C can be
developed without knowing about D

Independent operations

* Minimize dependency:
— reduce having to relay on anything set in stone

» Example: Replace
void print() // prints to System.out
* with

String getText() // can print anywhere

* Removes dependence on System, PrintStream

14

Aggregation

» Object of a class contains objects of
another class

« Example: MessageQueue aggregates
Messages

« Example: Mailbox aggregates
MessageQueue

» Implemented through instance fields

Relationships

e 1:1or1:0..1 relationship:

public class Mailbox

{

private Greeting myGreeting;

}

e 1:nrelationship:

public class MessageQueue

{

private ArrayList<Message> elements;

}

15

Inheritance

More general class = superclass
More specialized class = subclass

Subclass supports all method interfaces of
superclass (but implementations may differ)

Subclass may have added methods, added state
Subclass inherits from superclass

Example:
— ForwardedMessage inherits from Message

— Greeting does not inherit from Message (Can't store
greetings in mailbox)

Use Cases

Analysis technique
Each use case focuses on a specific scenario
Use case = sequence of actions

Action = interaction between actor and computer
system

Each action yields a result
Each result has a value to one of the actors
Use variations for exceptional situations

16

o a

Example case

Leave a Message

. Caller dials main number of voice mail system
. System speaks prompt

Enter mailbox number followed by #

User types extension number
System speaks

You have reached mailbox xxxx. Please leave a message now
Caller speaks message

Caller hangs up
System places message in mailbox

Variations

user enters invalid extension number
— What do you do?

— Who does it?

What if user hangs up instead of using
message”?

How many attempts at password?

17

CRC Cards

CRC = Classes, Responsibilities,
Collaborators

Developed by Beck and Cunningham
Use an index card for each class
Class name on top of card
Responsibilities on left

Collaborators on right

CRC

« Responsibilities should

MailBox be high level

*Manage Passcode
*Manage Greeting

*Manage New/saved
messages

« 1 - 3 responsibilities per
card

MessageQueue « Collaborators are for
the class, not for each
responsibility

18

Example

Use case: "Leave a message”

Caller connects to voice mail system
Caller dials extension number
"Someone" must locate mailbox

Neither Mailbox nor Message can do this
New class: MailSystem

Responsibility: manage mailboxes

UML

UML = Unified Modeling Language
Unifies notations developed by Booch,
Rumbaugh, Jacobson

Many diagram types

We'll use three types:

— Class Diagrams

— Sequence Diagrams

— State Diagrams

19

Class Diagrams

Rectangle with class name
Optional compartments

— Attributes
— Methods

 Include only key attributes and methods

Class Diagram

Class name
Mailbox ‘
Message newMessages e BT Attributes
savedMessages __Methods
add() s om e
getCurrentMessage()

20

UML Relationships

Dependency . >

Aggregation <>

Inheritance >

Composition P

Association

Directed

Association

Intertace lype. muesssunvssvwnmens >

Implementation

Multiplicities

e any number (0 or more): *
e one or more: 1..*

e zeroorone: 0..1

e exactly one: 1

Message |1

Queue

Message

21

Composition

» Special form of aggregation
» Contained objects don't exist outside container

» Example: message queues permanently
contained in mail box

Mailbox

>

Message
Queue

» Some designers don't like aggregation
» More general association relationship

Association

* Association can have roles

registers for has as participant

Course

Student

22

Some associations are bidirectional

Association Il

Can navigate from either class to the other
Example: Course has set of students, student has set of

courses

Some associations are directed
Navigation is unidirectional

Example: Message doesn't know about message queue
containing it

Message
Queue

*

> Message

Interface Types

Interface type describes a set of methods
No implementation, no state

Class implements interface if it implements

its methods
In UML, use stereotype «interface»

Message

«interface»
Comparable

23

Tip

Use UML to inform, not to impress
Don't draw a single monster diagram

Each diagram must have a specific
purpose

Omit inessential details

Seguence Diagrams

» Each diagram shows dynamics of scenario
» Object diagram: class name underlined

newMessages

Mailbox
aMailbox : MessageQueue

T T
I I
|
I

.

I
I I

add

Self call

- MailSystem

= locateMailbox

Object Construction

: MailSystem

«create —_—
- Z > Mailbox

State Diagram

connected

extension dialed

recording

passcode entered

mailbox
menu

Design Docs

 Recommendation: Use Javadoc comments
* Leave methods blank

/**
Adds a message to the end of the new messages.
@param aMessage a message

*/

public void addMessage(Message aMessage)

{

}

» Don't compile file, just run Javadoc
» Makes a good starting point for code later

26

Voice Mail System

Use text for voice, phone keys, hangup
12 ...0#on asingle line means key

H on a single line means "hang up"

All other inputs mean voice

In GUI program, will use buttons for keys
(see ch. 4)

Reach an Extension

1. User dials main number of system
2. System speaks prompt

Enter mailbox number followed by #

w

User types extension number
4. System speaks

You have reached mailbox xxxx.
Please leave a message now

27

Leave a Message

1. Caller carries out Reach an Extension

2. Caller speaks message

3. Caller hangs up

4. System places message in mailbox
Next time

* Read

» Make sure you are making headway in the
homework

* Download UML designer and try to play
with it.

28

