
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #3
T 9/13

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Feedback
• Scopes
• Static
• Method Overloading
• Exception handling
• Basic classes
• Constructors
• Useful tools

2

Feedback

• More clarification on THIS

• Practical java examples

• More use of laptop screen for examples

Announcements

• Homework 1 out
– Start early
– If you are having problems…you probably

have not done HW0
– Due Sept 27 midnight

3

This
public class student{
Date dateofBirth;
int idNumber;

public void foo(){
this.dataofBirth
}

}

Local Variables

• Variables declared within a method are
local to that method
– Local scope

• Variables declared within a class, are
called field variables

• Local variable can have the same name
as field variables
– Use this to disambiguate

4

Instantiated vs static

• When you define a method in a class,
every instance of the class has its own
copy.

• static methods allows one copy to be
accessed by all instances
– So……what parts of the class should it be

able to access?

Static Fields
• Shared among all instances of a class
• Example: shared random number generator

public class Greeter
{
. . .
private static Random generator;
}

• Example: shared constants

public class Math
{
. . .
public static final double PI = 3.14159265358979323846;
}

5

Static Methods
• Don't operate on objects
• Example: Math.sqrt
• Example: factory method

public static Greeter getRandomInstance()
{
if (generator.nextBoolean()) // note: generator is static field
return new Greeter("Mars");
else
return new Greeter("Venus");

}

• Invoke through class:

Greeter g = Greeter.getRandomInstance();

• Static fields and methods should be rare in OO programs

Pass around

• Can in theory use static variables to pass
around values between class instances

• When is this good?
• Why?
• Why Not?

6

Methods

• Methods are defined by their signatures
– Return values
– Arguments values

public void foo()
public int foo()

Method Overloading

• We can define two methods with the same
name, as long as they have different
signatures
– Different input parameters
or/and
– Different return values

Java will know which one to use

7

Exceptions

• Object that represents an unusual event or
an error

• Attempt to divide by zero
• Array out of bounds
• Null reference

Exception Handling
• Example: NullPointerException

String name = null;
int n = name.length(); // ERROR

• Cannot apply a method to null
• Virtual machine throws exception
• Unless there is a handler, program exits with stack trace

Exception in thread "main" java.lang.NullPointerException
at Greeter.sayHello(Greeter.java:25)
at GreeterTest.main(GreeterTest.java:6)

8

Checked and Unchecked
Exceptions

• Compiler tracks only checked exceptions
• NullPointerException is not checked
• IOException is checked
• Generally, checked exceptions are thrown for

reasons beyond the programmer's control
• Two approaches for dealing with checked

exceptions
– Declare the exception in the method header

(preferred)
– Catch the exception

Declaring Checked Exceptions
• Example: Opening a file may throw FileNotFoundException:

public void read(String filename) throws
FileNotFoundException

{
FileReader reader = new FileReader(filename);
. . .

}

• Can declare multiple exceptions

public void read(String filename)
throws IOException, ClassNotFoundException
public static void main(String[] args)
throws IOException, ClassNotFoundException

9

Catching Exceptions
try
{
code that might throw an IOException
}
catch (IOException exception)
{
take corrective action
}

• Corrective action can be:
– Notify user of error and offer to read another file
– Log error in error report file
– In student programs: print stack trace and exit

exception.printStackTrace();
System.exit(1);

The finally Clause
• Cleanup needs to occur during normal and exceptional processing
• Example: Close a file

FileReader reader = null;
try
{

reader = new FileReader(name);
...

} catch.....
finally
{
if (reader != null) reader.close();
}

10

Strings
• Sequence of Unicode characters

– (Technically, code units in UTF-16 encoding)
• length method yields number of characters
• "" is the empty string of length 0,

different from null
• Special class in Java

– Assigning a string literal to a string reference creates
an instance!

• charAt method yields characters:
char c = s.charAt(i);

String II

• substring method yields substrings:
• "Hello".substring(1, 3) is "el“
• Use equals to compare strings
if (greeting.equals("Hello"))

• == only tests whether the object
references are identical:

if ("Hello".substring(1, 3) == "el") ... // NO!

11

String concatenation
• + operator concatenates strings:
• "Hello, " + name
• If one argument of + is a string, the other is converted into a string:
int n = 7;
String greeting = "Hello, " + n;
// yields "Hello, 7"

• toString method is applied to objects

Date now = new Date();
String greeting = "Hello, " + now;
// concatenates now.toString()
// yields "Hello, Wed Jan 17 16:57:18 PST 2001"

Converting Strings to Numbers
• Use static methods

– WHY???
Integer.parseInt
Double.parseDouble

• Example:
String input = "7";
int n = Integer.parseInt(input);
// yields integer 7

• NOTE:
If string doesn't contain a number, throws a
NumberFormatException(unchecked)

12

Reading Input
• # Construct Scanner from input stream (e.g.

System.in)
• Scanner in = new Scanner(System.in)
• # nextInt, nextDouble reads next int or double
• int n = in.nextInt();
• # hasNextInt, hasNextDouble test whether next

token is a number
• # next reads next string (delimited by

whitespace)
• # nextLine reads next line

Example
01: import java.util.Scanner;
02:
03: public class InputTester
04: {
05: public static void main(String[] args)
06: {
07: Scanner in = new Scanner(System.in);
08: System.out.print("How old are you?");
09: int age = in.nextInt();
10: age++;
11: System.out.println("Next year, you'll be "

+ age);
12: }
13: }

13

The ArrayList<E> class
• Generic class: ArrayList<E> collects objects of

type E
• E cannot be a primitive type
• add appends to the end

ArrayList<String> countries = new
ArrayList<String>();

countries.add("Belgium");
countries.add("Italy");
countries.add("Thailand");

II
• get gets an element; no need to cast to correct type:
String country = countries.get(i);
• set sets an element
countries.set(1, "France");
• size method yields number of elements
for (int i = 0; i < countries.size(); i++) . . .
• Or use "for each" loop

for (String country : countries) . .

14

Arrays drawback

• Can insert and remove elements in the
middle

countries.add(1, "Germany");
countries.remove(0);
• Not efficient--use linked lists if needed

frequently

Linked List
• What ?

– Efficient insertion and removal
• add appends to the end

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");
countries.add("Italy");
countries.add("Thailand");

• Use Listiterators to edit in the middle
– Iterator points between list elements

15

List Iterators
• next retrieves element and advances iterator
ListIterator<String> iterator = countries.listIterator();
while (iterator.hasNext())
{

String country = iterator.next();
. . .

}
• Or use "for each" loop:
• for (String country : countries)
• add adds element before iterator position
• remove removes element returned by last call to next

Arrays

• Drawback of array lists: can't store
numbers in a simple manner

• Arrays can store objects of any type, but
their length is fixed

int[] numbers = new int[10];
• Array variable is a reference

ref

16

Arrays

• Array access with [] operator:
int n = numbers[i];
• length member yields number of elements

for (int i = 0; i < numbers.length; i++)

• Or use "for each" loop
for (int n : numbers)

Arrays
• # Can have array of length 0; not the same as

null:

• numbers = new int[0];

• # Multidimensional array

• int[][] table = new int[10][20];
• int t = table[i][j];

17

main

• The main method is declared public, static
and void.

• Because it is static we often need to
create an instance of the class inside its
own main.

• Why?

main

• Every class can have a main method. If
you five classes, with each one having a
main, you need to tell java which one to
run…

• How is this done?
• Can also use individual mains as testing

areas, will be ignored when not run

18

Default Values

• By Default java assigns the following
values:

• boolean false
• char 0
• byte, int 0
• float +0.0F
• double +0.0
• reference null

Constructor
• A constructor is a method that gets called when an object is created

using new.
• We can use the constructor to initialize the fields of the object.
• A constructor can have as many parameters as necessary, but can

not have a return type.

Public class Moo
{

private int x;

Public Moo(int x){
this.x = x;

}

}

19

Default Constructor
• If we don’t define a constructor the default

constructor with not parameters will be created.

• So we can say:
Moo m = new Moo();

• Like other methods, the constructor can also be
overloaded.

• Can call one constuctor from another
– this(something);
– Must be the first statement in the method

Remember

• Object: Three characteristic concepts

– State
– Behavior
– Identity

• Class: Collection of similar objects

20

Program Design

• Analysis
• Design
• Implementation

Analysis Phase

• Functional Specification

– Completely defines tasks to be solved
– Free from internal contradictions
– Readable both by domain experts and

software developers
– Reviewable by diverse interested parties
– Testable against reality

21

Design Phase
• Goals

– Identify classes
– Identify behavior of classes
– Identify relationships among classes

• Artifacts

– Textual description of classes and key methods
– Diagrams of class relationships
– Diagrams of important usage scenarios
– State diagrams for objects with rich state

Implementation Phase

• Implement and test classes
• Combine classes into program
• Avoid "big bang" integration
• Prototypes can be very useful

