CS1007: Object Oriented Design
and Programming in Java

Lecture #3
T 9/13

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

Feedback

Scopes

Static

Method Overloading
Exception handling
Basic classes
Constructors

Useful tools

Feedback

« More clarification on THIS
» Practical java examples

* More use of laptop screen for examples

Announcements

» Homework 1 out
— Start early

— If you are having problems...you probably
have not done HWO

— Due Sept 27 midnight

This

public class student{
Date dateofBirth;
int idNumber;

public void foo(){
this.dataofBirth

}
}

Local Variables

» Variables declared within a method are
local to that method

— Local scope

» Variables declared within a class, are
called field variables

* Local variable can have the same name
as field variables
— Use this to disambiguate

Instantiated vs static

* When you define a method in a class,
every instance of the class has its own

copy.

 static methods allows one copy to be
accessed by all instances

- So...... what parts of the class should it be
able to access?

Static Fields

« Shared among all instances of a class
Example: shared random number generator

public class Greeter

{

private static Random generator;

}
Example: shared constants

public class Math

{

public static final double Pl = 3.14159265358979323846;
3

Static Methods

Don't operate on objects
Example: Math.sqrt
Example: factory method

public static Greeter getRandomlnstance()

{

it (generator.nextBoolean()) // note: generator is static field
return new Greeter(*'Mars™);

else

return new Greeter(*'Venus');

3
Invoke through class:
Greeter g = Greeter.getRandomInstance();

Static fields and methods should be rare in OO programs

Pass around

« Can in theory use static variables to pass
around values between class instances

* When is this good?

 Why?

Why Not?

Methods

* Methods are defined by their signatures
— Return values
— Arguments values

public void foo()
public int foo()

Method Overloading

» We can define two methods with the same
name, as long as they have different
signatures

— Different input parameters
or/and
— Different return values

Java will know which one to use

Exceptions

Object that represents an unusual event or
an error

Attempt to divide by zero
Array out of bounds
Null reference

Exception Handling

» Example: NullPointerException

String name = null;
int n = name.length(); // ERROR

» Cannot apply a method to null
 Virtual machine throws exception
» Unless there is a handler, program exits with stack trace

Exception in thread "main” java.lang.NullPointerException
at Greeter.sayHello(Greeter.java:25)
at GreeterTest.main(GreeterTest.java:6)

Checked and Unchecked
Exceptions

» Compiler tracks only checked exceptions
* NullPointerException is not checked
» |OException is checked

» Generally, checked exceptions are thrown for
reasons beyond the programmer's control

» Two approaches for dealing with checked
exceptions

— Declare the exception in the method header
(preferred)

— Catch the exception

Declaring Checked Exceptions

« Example: Opening a file may throw FileNotFoundException:

public void read(String filename) throws
FileNotFoundException
{

FileReader reader = new FileReader(filename);

}

¢ Can declare multiple exceptions

public void read(String filename)

throws I10Exception, ClassNotFoundException
public static void main(String[] args)
throws I10Exception, ClassNotFoundException

Catching Exceptions

try
{
code that might throw an I0Exception

}

catch (10Exception exception)

{

take corrective action

}

« Corrective action can be:
— Notify user of error and offer to read another file
— Log error in error report file
— In student programs: print stack trace and exit

exception.printStackTrace();
System.exit(1);

The finally Clause

» Cleanup needs to occur during normal and exceptional processing
» Example: Close a file

FileReader reader = null;
try
{

reader = new FileReader(hame);

finally
{

if (reader != null) reader.close();

}

Strings

» Sequence of Unicode characters
— (Technically, code units in UTF-16 encoding)
= length method yields number of characters

» " is the empty string of length O,
different from null

» Special class in Java

— Assigning a string literal to a string reference creates
an instance!

» charAt method yields characters:
char c = s.charAt(i1);

String I

 substring method yields substrings:
» "Hello".substring(1, 3) is "el”

» Use equals to compare strings
if (greeting.equals('Hello™))
= == only tests whether the object

references are identical;
if ("Hello".substring(1, 3) == "el'™) ... // NO!

10

String concatenation

e + operator concatenates strings:

» "Hello, " + name

« If one argument of + is a string, the other is converted into a string:
intn=7;

String greeting = "Hello, " + n;

/l yields "Hello, 7"

» toString method is applied to objects

Date now = new Date();

String greeting = "Hello, " + now;

/I concatenates now.toString()

Il yields "Hello, Wed Jan 17 16:57:18 PST 2001"

Converting Strings to Numbers

» Use static methods
— WHY???

Integer.parselint

Double.parseDouble

» Example:

String input = "7";

int n = Integer.parselnt(input);
/I yields integer 7

* NOTE:
If string doesn't contain a number, throws a
NumberFormatException(unchecked)

11

Reading Input

Construct Scanner from input stream (e.g.
System.in)

Scanner in = new Scanner(System.in)
nextint, nextDouble reads next int or double
int n = in.nextint();

hasNextint, hasNextDouble test whether next
token is a number

next reads next string (delimited by
whitespace)

nextLine reads next line

01:

02:

03:
04:
05:
06:
07:
08:
09:
10:
11:

12
13

import java.util.Scanner;
public class InputTester
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
System.out._print("'How old are you?");
int age = in.nextInt();
age++;
: System.out._printIn("'Next year, you"ll be
+ age);
: }
D}

12

The ArrayList<E> class

» Generic class: ArrayList<E> collects objects of
type E

* E cannot be a primitive type
» add appends to the end

ArrayList<String> countries = new
ArrayList<String>();

countries.add("'Belgium™);
countries.add("'ltaly');
countries.add("'Thailand");

= get gets an element; no need to cast to correct type:
String country = countries.get(l);
» set sets an element

countries.set(1, "France");

* size method yields number of elements

for (inti = O; i < countries.size(); i++) . . .

» Or use "for each" loop

for (String country : countries) . .

13

Arrays drawback

e Can insert and remove elements in the
middle

countries.add(1, "Germany");
countries.remove(0);

» Not efficient--use linked lists if needed
frequently

Linked List

e What ?
— Efficient insertion and removal
* add appends to the end

LinkedList<String> countries = new LinkedList<String>();
countries.add("Belgium");

countries.add("ltaly");

countries.add("Thailand");

» Use Listiterators to edit in the middle
— lterator points between list elements

14

List Iterators

* next retrieves element and advances iterator
Listlterator<String> iterator = countries.listlterator();
while (iterator.hasNext())

{

String country = iterator.next();

Or use "for each" loop:

for (String country : countries)

add adds element before iterator position

remove removes element returned by last call to next

Arrays

» Drawback of array lists: can't store
numbers in a simple manner

» Arrays can store objects of any type, but
their length is fixed

" int[] numbers = new int[10];

« Array variable is a reference

> ref

15

Arrays

« Array access with [] operator:
int N = numbersi];
 length member yields number of elements

for (inti = 0; i < numbers.length; i++)

» Or use "for each" loop
for (int n : numbers)

Arrays

Can have array of length 0; not the same as
null:

numbers = new int[0];

Multidimensional array

int[][] table = new int[10][20],
int t = table[i][j];

16

main

* The main method is declared public, static
and void.

» Because it is static we often need to
create an instance of the class inside its
own main.

o Why?

main

» Every class can have a main method. If
you five classes, with each one having a
main, you need to tell java which one to
run...

e How is this done?

« Can also use individual mains as testing
areas, will be ignored when not run

17

Default Values

» By Default java assigns the following

values:
e boolean
e char
* byte, int
 float
e double
» reference

false
0

0
+0.0F
+0.0
null

Constructor

» A constructor is a method that gets called when an object is created

using new.

* We can use the constructor to initialize the fields of the object.

A constructor can have as many parameters as necessary, but can
not have a return type.

Public class Moo

{

private int Xx;

Public Moo(int x){

this.x = Xx;

}
}

18

Default Constructor

« If we don’t define a constructor the default
constructor with not parameters will be created.

e SO we can say:
Moo m = new Moo();

» Like other methods, the constructor can also be
overloaded.

* Can call one constuctor from another
— this(something);
— Must be the first statement in the method

Remember

» Object: Three characteristic concepts

— State
— Behavior
— ldentity

» Class: Collection of similar objects

19

Program Design

» Analysis
* Design
* Implementation

Analysis Phase

» Functional Specification

— Completely defines tasks to be solved
— Free from internal contradictions

— Readable both by domain experts and
software developers

— Reviewable by diverse interested parties
— Testable against reality

20

Design Phase

* Goals

— ldentify classes
— ldentify behavior of classes
— Identify relationships among classes

* Artifacts

Textual description of classes and key methods
Diagrams of class relationships

Diagrams of important usage scenarios

State diagrams for objects with rich state

Implementation Phase

Implement and test classes
Combine classes into program
Avoid "big bang" integration
Prototypes can be very useful

21

