
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #2
Sept 8

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcements

• Class website updated
– Homework assignments will be posted Sept 9.

• TA:
– Edward Ishak
– Amrita Rajagopal

• Unix review cources offered by CUIT
• Check courseworks tomorrow for office

hours survey.
– Let me know asap if you can not log in.

2

Unix classes

• 252 engineering
• Friday Sept 9

– 10-12, 1-3, 3-5pm
• Monday Sept 12

– 5-7pm
• Wed Sept 14

– 5-7pm
– Friday 16
– 19, 21

Outline

• Review of Java basics.
• Writing classes in Java.
• Types
• Object reference vs. Object values

Reading
• Today: Chapter 1
• Next: Chapter 1, homework 0 (non-credit)

3

Status

• Should have plans on acquiring the text
• Should have tested your cunix access
• Should have seen the class website

• Cunix accounts, will be used for homework
submissions

• CS accounts are useful for working in the clic lab
and accessing the cs departments resources.
– www.cs.columbia.edu/~crf/accounts

Suggestions

• Working outside of CUNIX:
– Setup correct version of java
– Use IDE
– Save often
– Don’t forget to test on cunix

• Working on CUNIX
– Don’t telnet
– Putty: available from acis
– Work in the labs

4

Class background

• There is a wide variety of both JAVA and
programming skills

• We will do a super fast overview of JAVA
basics before starting the meat and
potatoes of the course.

• Please bear with me.

Java Program Structure

• In the Java programming language:
– A program is made up of one or more

classes
– A class contains one or more methods
– A method contains program statements

• A Java application always contains a
method called main

5

Java Program
• A Java program contains at least one class definition.
public class Hello {
public static void main(String[] args) {
System.out.println("Hello, world!") ;
}

}
• This code defines a class named Hello. The definition of

Hello must be in a file Hello.java.
• The method main is the code that runs when you call

`java Hello'.

10

Java Program Structure
public class Hello

{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

6

11

Java Program Structure
public class Hello

{

}

// comments about the class

public static void main (String[] args)

{

}

// comments about the method

method headermethod body

12

Comments
• Comments in a program are called inline

documentation

• They should be included to explain the purpose of the
program and describe processing steps

• They do not affect how a program works, they are
simply ignored.

• Java comments can take three forms:
// this comment runs to the end of the line

/* this comment runs to the terminating
symbol, even across line breaks */

/** this is a javadoc comment */

7

Identifiers
• Elements in a program are identified by some

name. In Java, identifiers:
– Always start with a letter.
– Can include letters, digits, underscore (` ') and the

dollar sign symbol ($).
– Must be different from any Java reserved words (or

keywords).
• Often we use special identifiers called reserved

words that already have a predefined meaning
in the language
– Keywords that we've seen so far include: public,
static, class and void.

14

Reserved Words
• The Java reserved words:

abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
enum
extends
false
final
finally
float
for
goto
if
implements
import
instanceof

int
interface
long
native
new
null
package
private
protected
public
return
short
static

strictfp
super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

8

Case counts

• Identifiers and keywords in Java are case
sensitive. In other words, capitalization matters.
Keywords are always in lowercase. The
following identifiers are all different:
– SHLOMO
– shlomo
– SHlomO

• Bad idea: use all those in one program.
• WHY?

Spaces
• We use the word whitespace to describe blanks, tabs and newline

characters. The Java compiler ignores whitespace except when it is
used to separate words. E.g.:

y=m*x+b;total=total+y;
• Is the same as:

y = m*x + b ;
total = total + y ;

• Which is easier to read?

• Does anyone know the diffence between DOS and UNIX
linebreaks? (hint: fixcrlf)

9

Types

The values a variable can take on and the
operations we can perform on them is
determined by its type. Java has the
following type categories:

• Booleans
• Characters
• Integers
• Floating Points
• References to Objects

Integers
• The java integer type represents both positive

and negative integers. An n-bit integer x, can
represent the range:

• byte 8 bits
short 16 bits
int 32 bits
long 64 bits

11 22 −− ≤≤− nn x

10

Integer Literal
• A integer value or literal can be specified in

decimal, hex, or octal (base 8)
– Decimal is a regular number which doesn’t start with

zero
– Hex literals start with 0x…(0x1F = 31 base10)
– Octal literals start with just zero (072 = 58 base10)

• Integer literals are by default of type int
• A long literal ends with L
• If an int is small enough to fit into a short, it will

be automatically converted, else you need to
cast. In general extra bits are thrown away (not
always good).

Floating Point Type

• Floating point are used to represent the
real numbers, i.e. fractional numbers

• 0.345 = 3.45 X 10

11

Program Development
• The mechanics of developing a program include several

activities
1. Skip design

2. writing the program in a specific programming language (such
as Java)

3. translating the program into a form that the computer can
execute

4. investigating and fixing various types of errors that can occur

5. Go back and design correctly

• Software tools can be used to help with all parts of this
process

Development Environments
• There are many programs that support the

development of Java software, including:

– Sun Java Development Kit (JDK)
– Sun NetBeans
– IBM Eclipse
– Borland JBuilder
– MetroWerks CodeWarrior
– Monash BlueJ

• Though the details of these environments differ, the
basic compilation and execution process is
essentially the same

12

23

Syntax and Semantics
• The syntax rules of a language define how we can put

together symbols, reserved words, and identifiers to
make a valid program

• The semantics of a program statement define what that
statement means (its purpose or role in a program)

• A program that is syntactically correct is not necessarily
logically (semantically) correct

• A program will always do what we tell it to do, not what
we meant to tell it to do

24

Errors
• A program can have three types of errors

• The compiler will find syntax errors and other basic
problems (compile-time errors)

– If compile-time errors exist, an executable version of the program
is not created

• A problem can occur during program execution, such as
trying to divide by zero, which causes a program to
terminate abnormally (run-time errors)

• A program may run, but produce incorrect results,
perhaps using an incorrect formula (logical errors)

13

Basic Program Development

errors

errors

Edit and
save program

Compile program

Execute program and
evaluate results

Problem Solving
• The purpose of writing a program is to solve a problem

• Solving a problem consists of multiple activities:

– Understand the problem
– Design a solution
– Consider alternatives and refine the solution
– Implement the solution
– Test the solution

• These activities are not purely linear – they overlap and
interact

14

Problem Solving

• The key to designing a solution is breaking it
down into manageable pieces

• When writing software, we design separate
pieces that are responsible for certain parts of
the solution

• An object-oriented approach lends itself to this
kind of solution decomposition

• We will dissect our solutions into pieces called
objects and classes

Object-Oriented Programming
• Java is an object-oriented programming language

• As the term implies, an object is a fundamental entity in a Java
program

• Objects can be used effectively to represent real-world entities

• We try to define all our data as objects, and define programs to work
on those objects

• For instance, an object might represent a particular employee in a
company

• Each employee object handles the processing and data
management related to that employee

15

29

Objects
• An object has:

– state - descriptive characteristics

– behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its current balance

• The behaviors associated with a bank account include
the ability to make deposits and withdrawals

• Note that the behavior of an object might change its
state

Reusability
• OOP encourages the design of reusable

components
• Vehicle as a general definition
• Mini-van as a more specific object
Public class miniVan{
String manufacturer;
String model;
int year;
Color color;

}

16

Classes
• An object is defined by a class

• A class is the blueprint of an object

• The class uses methods to define the behaviors of the
object

• The class that contains the main method of a Java
program represents the entire program

• A class represents a concept, and an object represents
the embodiment of that concept

• Multiple objects can be created from the same class

Instantiating

• Once we define a class we create an
instance of the class.

• The constructor method is responsible for
initializing the object

• new creates an instance

17

null
• null refers to no object

– Uninitialized objects
– Explicit assignment

• Can assign null to object variable:
– worldGreeter = null;

• Can test whether reference is null
– if (worldGreeter == null) . . .

• Dereferencing null causes
NullPointerException

this
• Refers to implicit parameter of method call
• Example: Equality testing

public boolean equals(Greeter other)
{

if (this == other) return true;
return name.equals(other.name);

}

• Example: Constructor

public Greeter(String name)
{

this.name = name;
}

18

Objects and Classes

Bank
Account

A class
(the concept)

John’s Bank Account
Balance: $5,257

An object
(the realization)

Bill’s Bank Account
Balance: $1,245,069

Mary’s Bank Account
Balance: $16,833

Multiple objects
from the same class

Inheritance
• One class can be used to derive another

via inheritance

• Classes can be organized into
hierarchies

Bank
Account

Account

Charge
Account

Savings
Account

Checking
Account

19

Java Objects

• Construct new objects with new operator
– new Greeter("World")

• Can invoke method on newly constructed object
– new Greeter("World").sayHello()

• More common: store object reference in object
variable
– Greeter worldGreeter = new Greeter("World");

• Then invoke method on variable:
– String greeting = worldGreeter.sayHello();

References
• A variable is a location in memory
• int x;
• x= 234;
• miniVan mycar;
• mycar = new miniVan(….)

234

ref

x

mycar
Honda

Odyssey
2000
Red

20

Difference References
• Create new variable y
• int y = x;
• Create another miniVan instance

miniVan other = mycar;

234

234

ref

ref

x

mycar
Honda

Odyssey
2000
Red

y

other

Difference II
• Other.year = 2005;
• Surprise!

234

234

ref

ref

x

mycar
Honda

Odyssey
2005
Red

y

other

21

Why?

• Any ideas why we would want to create
object using references?

References

• Object variable holds a reference
– Greeter worldGreeter = new Greeter("World");

• Can have multiple references to the same
object
– Greeter anotherGreeter = worldGreeter;

• After applying mutator method, all
references access modified object
– anotherGreeter.setName("Dave");

– worldGreeter.sayHello() //returns "Hello, Dave!"

22

Parameter Passing
• Java uses "call by value":

Method receives copy of parameter value
• Copy of object reference lets method modify object

public void copyNameTo(Greeter other)
{

other.name = this.name;
}

Greeter worldGreeter = new Greeter("World");
Greeter daveGreeter = new Greeter("Dave");
worldGreeter.copyNameTo(daveGreeter);

No reference passing
• No Reference Parameters

• Java has no "call by reference"
public void copyLengthTo(int n)
{

n = name.length();
}

public void copyGreeterTo(Greeter other)
{
other = new Greeter(name);

}

• Neither call has any effect after the method returns

int length = 0;
worldGreeter.copyLengthTo(length); // length still 0
worldGreeter.copyGreeterTo(daveGreeter) // daveGreeter unchanged

23

Java packages
• Collection of similar classes
• Package names are dot-separated identifier sequences

java.util
javax.swing
com.sun.misc
edu.columbia.cs.robotics

• Unique package names: start with reverse domain name
• Must match directory structure
• package statement to top of file
• Class without package name is in "default package“
• Full name of class = package name + class name
java.util.String

Importing Packages
• Tedious to use full class names
• import allows you to use short class name

import java.util.Scanner;
. . .
Scanner a; // i.e. java.util.Scanner

• Can import all classes from a package
import java.util.*;

24

Command Line Arguments
public static void main(String[] args)

• args, is an array of string.
• The elements of args are the command line

arguments using in running this class.

Java testProgram –t –Moo=boo out.txt
0: ‘-t’
1: ‘-Moo=boo’
2: ‘out.txt’

Two dimensional arrays
• You can create an array of any object, including

arrays
• An array of an array is a two dimensional array

public class TicTacToe{
public static final int EMPTY = 0;
public static final int x = 1;
public static final int y = 2;

private int[][] board =
{ {EMPTY, EMPTY, EMPTY},

{EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY}

}

25

Two dimensions

• You can also initialize the inner array as a
separate call.

• Doesn’t have to be congruous memory locations

int [][]example = new int[5][];
for (int i=0;i<5;i++){

example[i] = new int[i+1];
}

Multiple dimensions

• No reason cant create 4,5,6 dimension
arrays

• Gets hard to manage
• Think about another way of representing

the data
• Often creating an object is a better

approach

26

Next Class

• Read Chapter 1
• Download and try Homework 0
• Get up to speed on Java

– Read old notes
– Dig out reference text

