CS1007: Object Oriented Design
and Programming in Java

Lecture #19
Dec 6

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

e Chapter 8
— Simple UML editor
« Software engineering

« Reading wrapping up chapter 8.

Announcements

Thursday will cover one advanced topic

Thursday will be review, please look over
class notes, assignments, reading for
anything you want reviewed.

Will also post sample exams etc

Open notes/book exam

The Graph Editor Framework

* Want to extend framework discussed in
last class to a violet like editor

« Will only implement class diagrams

B

x|

File Edit

HEIRN Y Y Y NN

Mailbox
Message Message
—|text

Queue

Requirements

Different kinds of lines

Will need to display a class name and
attributes and methods.

Edges might touch multiple classes
Edges have complicated properties

RectangularNode
SegmentedLineEdge

GeneralPathEdge uses general path for
containment testing

ArrowHead, BentStyle enumerate arrow and line
styles

MultiLineString property for class compartments
ClassNode, ClassRelationshipEdge,
ClassDiagramGraph

No change to basic framework!

zl

File

]
Edil IE Propenties IY

bentStyle HVH

=

endArrowHead [NONE
endlabet 2 |
lineStyle |SOLID

middleLabel

startArrowHead |DIAMOND :
startlabel ||

X

2|Message
Queue

Beyond basics

» Violet is based on an enhancement of the book's
framework

¢ Adds many options
— graphics export
— grid
— multiple windows

« Can add 3 simple graph editor classes to that
framework

« App tracks framework evolution at no cost to app
programmer

Interested

* Source code for Violet online, can take a
look if you want.

Next step

» We reviewed a general framework for
displaying graphs....but this can be
generalized to many different tasks

Switch gears

» Taking the Object oriented Design
approach to the next phase.

« Many of you (hopefully not because of
1007) might not be taking too many more
programming courses.

What is Software Engineering?

Stephen Schach: “Software engineering is a discipline whose aim is
the production of fault-free software, delivered on time and within
budget, that satisfies the user’s needs.”

includes:

— requirements analysis

— human factors

— functional specification

— software architecture

— design methods

— programming for reliability

— programming for maintainability

— team programming methods

— testing methods

— configuration management

Why

in school, you learn the mechanics of programming

you are given the specifications

you know that it is possible to write the specified

program in the time allotted

but not so in the real world...

— what if the specifications are not possible?

— what if the time frame is not realistic?

— what if you had to write a program that would last for 10 years?

in the real world:

— software is usually late, overbudget and broken

— software usually lasts longer than employees or hardware

tbh(_e Ireal world is cruel and software is fundamentally
rittle

Who

the average manager has no idea how software needs to
be implemented

the average customer says: “build me a system to do X"

the average layperson thinks software can do anything
(or nothing)

most software ends up being used in very different ways
than how it was designed to be used

Time

you never have enough time
software is often under budgeted

the marketing department always wants it
tomorrow

even though they don’t know how long it will take
to write it and test it

“Why can't you add feature X? It seems so
simple...”

“l thought it would take a week...”

“We've got to get it out next week. Hire 5 more
programmers...”

People

you can’t do everything yourself

e.g., your assignment: “write an operating
system”

where do you start?

what do you need to write?

do you know how to write a device driver?
do you know what a device driver is?

should you integrate a browser into your
operating system?
how do you know if it's working?

Complexity

* software is complex!

¢ or it becomes that way
— feature bloat
— patching

¢ e.g., the evolution of Windows NT
— NT 3.1 had 6,000,000 lines of code
— NT 3.5 had 9,000,000
— NT 4.0 had 16,000,000
— Windows 2000 has 30-60 million
— Windows XP has at least 45 million...

Therac-25

http://sunnyday.mit.edu/papers/therac.pdf

therac-25 was a linear accelerator released in 1982 for
cancer treatment by releasing limited doses of radiation

it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were
hardward-controlled)

it was controlled by a PDP-11; software controlled safety

in case of error, software was designed to prevent
harmful effects

* BUT

« in case of software error, cryptic codes were
displayed to the operator, such as:

¢ “MALFUNCTION xx”
« Where 1 <xx<64

e operators became insensitive to these cryptic
codes

« they thought it was impossible to overdose a
patient

* however, from 1985-1987, six patients received

massive overdoses of radiation and several died

Problems

a race condition often happened when operators entered data
quickly, then hit the up-arrow key to correct the data and the values
were not reset properly

the manufacturing company never tested quick data entry— their
testers weren't that fast since they didn’t do data entry on a daily
basis

apparently the problem had existed on earlier models, but a
hardware interlock mechanism prevented the software race
condition from occurring

in this version, they took out the hardware interlock mechanism
because they trusted the software

Example2: Ariane 501

next-generation launch vehicle, after ariane 4

prestigious project for ESA
maiden flight: June 4, 1996
inertial reference system (IRS), written in ada
— computed position, velocity, acceleration
dual redundancy
calibrated on launch pad
recalibration routine runs after launch (active but not used)

one step in recalibration converted floating point value of horizontal velocity to integer
ada automatically throws out of bounds exception if data conversion is out of bounds

if exception isn’'t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

perfect launch

ariane 501 flies much faster than ariane 4

horizontal velocity component goes out of bounds

IRS in both main and redundant systems go into diagnostic mode

control system receives diagnostic data but interprets it as weird position
data

attempts to correct it...
ka-boom!
failure at altitude of 2.5 miles

25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid propellant

expensive failure:
— ten years
— $7 billion

horizontal velocity conversion was deliberately left
unchecked

who is to blame?
“mistakes were made”

software had never been tested with actual flight
parameters

problem was easily reproduced in simulation, after the
fact

Mythical man-month

* Fred Brooks (1975)
» book written after his experiences in the OS/360 design

* major themes:
- |Brooks' Law: “Adding manpower to a late software project makes it
ater.”
— the “black hole” of large project design: getting stuck and getting out
— organizing large team projects and communication
— documentation!!!
— when to keep code; when to throw code away
— dealing with limited machine resources

* most are supplemented with practical experience

No silver bullet

* paper written in 1986 (Brooks)

+ “There is no single development, in either technology or
management technique, which by itself promises even one order-of

magnitude improvement within a decade of productivity, in reliability,

in simplicity.”
« why? software is inherently complex
« lots of people disagree, but there is no proof of a counter-argument

* Brooks’ point: there is no revolution, but there is evolution when it
comes to software development

SE Mechanics

» well-established techniques and
methodologies:
— team structures
— software lifecycle / waterfall model
— cost and complexity planning / estimation
— reusability, portability, interoperability,

scalability

— UML, design patterns

Team Structures

¢ why Brooks’ Law?
— training time
— increased communications: pairs grow by

» while people/work grows by
— how to divide software? this is not task sharing

¢ types of teams
— democratic
— “chief programmer”
— synchronize-and-stabilize teams
— eXtreme Programming teams

Lifecycles

software is not a build-one-and-throw-away process
that's far too expensive
so software has a lifecycle

we need to implement a process so that software is
maintained correctly

examples:
— build-and-fix
— waterfall

Software lifestyle cycle

7 basic phases (Schach):

— requirements (2%)

— specification/analysis (5%)

— design (6%)

— implementation (module coding and testing) (12%)
— integration (8%)

— maintenance (67%)

— retirement

percentages in ()'s are average cost of each task during 1976-1981
testing and documention should occur throughout each phase
note which is the most expensive!

Requirements

what are we doing, and why?

need to determine what the client needs, not what the client wants
or thinks they need

worse— requirements are a moving target!
common ways of building requirements include:
— prototyping
— natural-language requirements documentl

use interviews to get information (not easy!)

example: your online store

Specifications

the “contract’— frequently a legal document
what the product will do, not how to do it
should NOT be:

— ambiguous, e.g., “optimal”

— incomplete, e.g., omitting modules

— contradictory
detailed, to allow cost and duration estimation
classical vs object-oriented (OO) specification

— classical: flow chart, data-flow diagram

— object-oriented: UML

example: your online store

Design Phase

the “how” of the project
fills in the underlying aspects of the specification
design decisions last a long time!
even after the finished product
— maintenance documentation
— try to leave it open-ended
architectural design: decompose project into modules
detailed design: each module (data structures, algorithms)

UML can also be useful for design

example: your online store

Implementation

« implement the design in programming language (s)
« observe standardized programming mechanisms
« testing: code review, unit testing
« documentation: commented code, test cases
« integration considerations
— combine modules and check the whole product
— top-down vs bottom-up ?
— testing: product and acceptance testing; code review
— documentation: commented code, test cases

— done continually with implementation (can't wait until the last minute!)

« example: your online store

Maintenance Phase

defined by Schach as any change

by far the most expensive phase

poor (or lost) documentation often makes the situation even worse
programmers hate it

several types:
— corrective (bugs)
— perfective (additions to improve)
— adaptive (system or other underlying changes)

tesiting maintenance: regression testing (will it still work now that I've fixed
it?

documentation: record all the changes made and why, as well as new test
cases

example: your on-line store— how might the system change once it's been
implemented?

Retirement phase

« the last phase, of course

« why retire?
— changes too drastic (e.g., redesign)
— too many dependencies (“house of cards”)
— no documentation
— hardware obsolete

« true retirement rate: product no longer useful

Planning and Estimation

» we still need to deal with the bottom line

— how much will it cost?

— can you stick to your estimate?
—how long will it take?

— can you stick to your estimate?

how do you measure the product (size,
complexity)?

* impediments:

— lack of trust

Reusability

— logistics of reuse
— loss of knowledge base
— mismatch of features

how to:

— libraries

— APIs

— system calls

code)

objects (OOP)
frameworks (a generic body into which you add your particular

Portability
Java and C#

Java: uses a JVM
— write once, run anywhere (sorta, kinda)

C#: also uses a JVM
— emphasizes mobile data rather than code

winner?

— betting against Microsoft is historically a losing
proposition...

interoperability

e.g., CORBA

define abstract services

allow programs in any language to access
services in any language in any location

object-ish

10

Scalability

» something to keep in mind

« don't worry about scaling beyond the abilities of
the machine

 avoid unnecessary barriers

 from single connection to forking processes to
threads...

Take home message

Importance of well thought of design
— BEFORE PROGRAMMING

Ability to adopt

Ability to fairly review
progress/shortcomings

Ability to do good job ©

Importance of not just sitting and
programming

Next time

» Will be covering some advanced topics
and java concepts

» Will hold brief review of material for the
final

« Will take any questions you have which
you would like to see discussed

11

