
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #19
Dec 6

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Chapter 8
– Simple UML editor

• Software engineering

• Reading wrapping up chapter 8.

Announcements

• Thursday will cover one advanced topic
• Thursday will be review, please look over

class notes, assignments, reading for
anything you want reviewed.

• Will also post sample exams etc

• Open notes/book exam

The Graph Editor Framework

• Want to extend framework discussed in
last class to a violet like editor

• Will only implement class diagrams

2

Requirements

• Different kinds of lines
• Will need to display a class name and

attributes and methods.
• Edges might touch multiple classes
• Edges have complicated properties

• RectangularNode
• SegmentedLineEdge
• GeneralPathEdge uses general path for

containment testing
• ArrowHead, BentStyle enumerate arrow and line

styles
• MultiLineString property for class compartments
• ClassNode, ClassRelationshipEdge,

ClassDiagramGraph
• No change to basic framework!

3

Beyond basics
• Violet is based on an enhancement of the book's

framework
• Adds many options

– graphics export
– grid
– multiple windows

• Can add 3 simple graph editor classes to that
framework

• App tracks framework evolution at no cost to app
programmer

Interested

• Source code for Violet online, can take a
look if you want.

Next step

• We reviewed a general framework for
displaying graphs….but this can be
generalized to many different tasks

Switch gears

• Taking the Object oriented Design
approach to the next phase.

• Many of you (hopefully not because of
1007) might not be taking too many more
programming courses.

4

What is Software Engineering?
• Stephen Schach: “Software engineering is a discipline whose aim is

the production of fault-free software, delivered on time and within
budget, that satisfies the user’s needs.”

• includes:
– requirements analysis
– human factors
– functional specification
– software architecture
– design methods
– programming for reliability
– programming for maintainability
– team programming methods
– testing methods
– configuration management

Why
• in school, you learn the mechanics of programming
• you are given the specifications
• you know that it is possible to write the specified

program in the time allotted
• but not so in the real world...

– what if the specifications are not possible?
– what if the time frame is not realistic?
– what if you had to write a program that would last for 10 years?

• in the real world:
– software is usually late, overbudget and broken
– software usually lasts longer than employees or hardware

• the real world is cruel and software is fundamentally
brittle

Who
• the average manager has no idea how software needs to

be implemented

• the average customer says: “build me a system to do X”

• the average layperson thinks software can do anything
(or nothing)

• most software ends up being used in very different ways
than how it was designed to be used

Time
• you never have enough time
• software is often under budgeted
• the marketing department always wants it

tomorrow
• even though they don’t know how long it will take

to write it and test it
• “Why can’t you add feature X? It seems so

simple...”
• “I thought it would take a week...”
• “We’ve got to get it out next week. Hire 5 more

programmers...”

5

People
• you can’t do everything yourself
• e.g., your assignment: “write an operating

system”
• where do you start?
• what do you need to write?
• do you know how to write a device driver?
• do you know what a device driver is?
• should you integrate a browser into your

operating system?
• how do you know if it’s working?

Complexity
• software is complex!
• or it becomes that way

– feature bloat
– patching

• e.g., the evolution of Windows NT
– NT 3.1 had 6,000,000 lines of code
– NT 3.5 had 9,000,000
– NT 4.0 had 16,000,000
– Windows 2000 has 30-60 million
– Windows XP has at least 45 million...

Therac-25
• http://sunnyday.mit.edu/papers/therac.pdf

• therac-25 was a linear accelerator released in 1982 for
cancer treatment by releasing limited doses of radiation

• it was software-controlled as opposed to hardware-
controlled (previous versions of the equipment were
hardward-controlled)

• it was controlled by a PDP-11; software controlled safety

• in case of error, software was designed to prevent
harmful effects

• BUT
• in case of software error, cryptic codes were

displayed to the operator, such as:
• “MALFUNCTION xx”
• Where 1 < xx < 64

• operators became insensitive to these cryptic
codes

• they thought it was impossible to overdose a
patient

• however, from 1985-1987, six patients received
massive overdoses of radiation and several died

6

Problems
• a race condition often happened when operators entered data

quickly, then hit the up-arrow key to correct the data and the values
were not reset properly

• the manufacturing company never tested quick data entry— their
testers weren’t that fast since they didn’t do data entry on a daily
basis

• apparently the problem had existed on earlier models, but a
hardware interlock mechanism prevented the software race
condition from occurring

• in this version, they took out the hardware interlock mechanism
because they trusted the software

Example2: Ariane 501
• next-generation launch vehicle, after ariane 4

• prestigious project for ESA
• maiden flight: June 4, 1996
• inertial reference system (IRS), written in ada

– computed position, velocity, acceleration
– dual redundancy
– calibrated on launch pad
– recalibration routine runs after launch (active but not used)

• one step in recalibration converted floating point value of horizontal velocity to integer

• ada automatically throws out of bounds exception if data conversion is out of bounds

• if exception isn’t handled... IRS returns diagnostic data instead of position, velocity,
acceleration

• perfect launch

• ariane 501 flies much faster than ariane 4

• horizontal velocity component goes out of bounds

• IRS in both main and redundant systems go into diagnostic mode

• control system receives diagnostic data but interprets it as weird position
data

• attempts to correct it...

• ka-boom!

• failure at altitude of 2.5 miles

• 25 tons of hydrogen, 130 tons of liquid oxygen, 500 tons of solid propellant

• expensive failure:
– ten years
– $7 billion

• horizontal velocity conversion was deliberately left
unchecked

• who is to blame?

• “mistakes were made”

• software had never been tested with actual flight
parameters

• problem was easily reproduced in simulation, after the
fact

7

Mythical man-month
• Fred Brooks (1975)

• book written after his experiences in the OS/360 design

• major themes:
– Brooks’ Law: “Adding manpower to a late software project makes it

later.”
– the “black hole” of large project design: getting stuck and getting out
– organizing large team projects and communication
– documentation!!!
– when to keep code; when to throw code away
– dealing with limited machine resources

• most are supplemented with practical experience

No silver bullet
• paper written in 1986 (Brooks)

• “There is no single development, in either technology or
management technique, which by itself promises even one order-of
magnitude improvement within a decade of productivity, in reliability,
in simplicity.”

• why? software is inherently complex

• lots of people disagree, but there is no proof of a counter-argument

• Brooks’ point: there is no revolution, but there is evolution when it
comes to software development

SE Mechanics

• well-established techniques and
methodologies:
– team structures
– software lifecycle / waterfall model
– cost and complexity planning / estimation
– reusability, portability, interoperability,

scalability
– UML, design patterns

Team Structures
• why Brooks’ Law?

– training time
– increased communications: pairs grow by

• while people/work grows by
– how to divide software? this is not task sharing

• types of teams
– democratic
– “chief programmer”
– synchronize-and-stabilize teams
– eXtreme Programming teams

8

Lifecycles
• software is not a build-one-and-throw-away process

• that’s far too expensive

• so software has a lifecycle

• we need to implement a process so that software is
maintained correctly

• examples:
– build-and-fix
– waterfall

Software lifestyle cycle
• 7 basic phases (Schach):

– requirements (2%)
– specification/analysis (5%)
– design (6%)
– implementation (module coding and testing) (12%)
– integration (8%)
– maintenance (67%)
– retirement

• percentages in ()’s are average cost of each task during 1976-1981
• testing and documention should occur throughout each phase
• note which is the most expensive!

Requirements
• what are we doing, and why?

• need to determine what the client needs, not what the client wants
or thinks they need

• worse— requirements are a moving target!

• common ways of building requirements include:
– prototyping
– natural- �language requirements document

• use interviews to get information (not easy!)

• example: your online store

Specifications
• the “contract”— frequently a legal document

• what the product will do, not how to do it

• should NOT be:
– ambiguous, e.g., “optimal”
– incomplete, e.g., omitting modules
– contradictory

• detailed, to allow cost and duration estimation

• classical vs object-oriented (OO) specification
– classical: flow chart, data-flow diagram
– object-oriented: UML

• example: your online store

9

Design Phase
• the “how” of the project

• fills in the underlying aspects of the specification

• design decisions last a long time!

• even after the finished product
– maintenance documentation
– try to leave it open-ended

• architectural design: decompose project into modules

• detailed design: each module (data structures, algorithms)

• UML can also be useful for design

• example: your online store

Implementation
• implement the design in programming language (s)

• observe standardized programming mechanisms

• testing: code review, unit testing

• documentation: commented code, test cases

• integration considerations
– combine modules and check the whole product
– top-down vs bottom-up ?
– testing: product and acceptance testing; code review
– documentation: commented code, test cases
– done continually with implementation (can’t wait until the last minute!)

• example: your online store

Maintenance Phase
• defined by Schach as any change
• by far the most expensive phase
• poor (or lost) documentation often makes the situation even worse
• programmers hate it

• several types:
– corrective (bugs)
– perfective (additions to improve)
– adaptive (system or other underlying changes)

• testing maintenance: regression testing (will it still work now that I’ve fixed
it?)

• documentation: record all the changes made and why, as well as new test
cases

• example: your on-line store— how might the system change once it’s been
implemented?

Retirement phase

• the last phase, of course

• why retire?
– changes too drastic (e.g., redesign)
– too many dependencies (“house of cards”)
– no documentation
– hardware obsolete

• true retirement rate: product no longer useful

10

Planning and Estimation

• we still need to deal with the bottom line
– how much will it cost?
– can you stick to your estimate?
– how long will it take?
– can you stick to your estimate?

• how do you measure the product (size,
complexity)?

Reusability
• impediments:

– lack of trust
– logistics of reuse
– loss of knowledge base
– mismatch of features

• how to:
– libraries
– APIs
– system calls
– objects (OOP)
– frameworks (a generic body into which you add your particular

code)

Portability
• Java and C#

• Java: uses a JVM
– write once, run anywhere (sorta, kinda)

• C#: also uses a JVM
– emphasizes mobile data rather than code

• winner?
– betting against Microsoft is historically a losing

proposition...

interoperability

• e.g., CORBA

• define abstract services

• allow programs in any language to access
services in any language in any location

• object-ish

11

Scalability

• something to keep in mind

• don’t worry about scaling beyond the abilities of
the machine

• avoid unnecessary barriers

• from single connection to forking processes to
threads...

Take home message

• Importance of well thought of design
– BEFORE PROGRAMMING

• Ability to adopt
• Ability to fairly review

progress/shortcomings
• Ability to do good job ☺
• Importance of not just sitting and

programming

Next time

• Will be covering some advanced topics
and java concepts

• Will hold brief review of material for the
final

• Will take any questions you have which
you would like to see discussed

