
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #18
Dec 1

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Frameworks
– Approach
– Requirements
– Code examples

– Reading: Chapter 8.2-8.5

Graph editor framework

• Traditional approach: programmer starts
from scratch for every editor type

• Framework approach: Programmer
extends graph, node, edge classes

• Framework handles UI, load/save, ...
• Our framework is kept simple
• Violet uses extension of this framework

Requirements

• What are the GUI requirements?
• What are the programming requirements?

2

UI

• Toolbar on top
• Grabber button for selecting nodes/edges
• Buttons for current node/edge type
• Menu
• Drawing area

Mouse Control

• Click on empty space: current node
inserted

• Click on node or edge: select it
• Drag node when current tool an edge:

connect nodes
• Drag node when current tool not an edge:

move node

Divide the work

• Divide code between
– framework
– specific application

• Rendering is app specific (e.g. transistor)
• Hit testing is app specific (odd node shapes)
• Framework draws toolbar
• Framework does mouse listening

3

Adding nodes

• Framework draws toolbar
• How does it know what nodes/edges to

draw?
• App gives a list of nodes/edges to

framework at startup
• How does app specify nodes/edges?

– Class names? ("Transistor")
– Class objects? (Transistor.class)
– Node, Edge objects? (new Transistor())

• Objects are more flexible than classes
new CircleNode(Color.BLACK)
new CircleNode(Color.WHITE)
• When user inserts new node, the toolbar node is

cloned
• Node prototype = node of currently selected

toolbar button;
• Node newNode = (Node) prototype.clone();
• Point2D mousePoint = current mouse position;
• graph.add(newNode, mousePoint);

Framework Classes
• Framework programmer implements Node/Edge

interfaces
• draw draws node/edge
• getBounds returns enclosing rectangle (to

compute total graph size for scrolling)
• Edge.getStart, getEnd yield start/end nodes
• Node.getConnectionPoint computes attachment

point on shape boundary
• Edge.getConnectionPoints yields start/end

coordinates (for grabbers)
• clone overridden to be public

Code

• AbstractEdge class for convenience
• Programmer implements Node/Edge type

or extends AbstractEdge
Ch8/graphed/Node.java
Ch8/graphed/Edge.java
Ch8/graphed/AbstractEdge.java

4

• Graph collects nodes and edges
• Subclasses override methods
public abstract Node[] getNodePrototypes()
public abstract Edge[] getEdgePrototypes()

Ch8/graphed/Graph.java

Framework UI

• GraphFrame: a frame that manages the toolbar,
the menu bar, and the graph panel.

• ToolBar: a panel that holds toggle buttons for the
node and edge icons.

• GraphPanel: a panel that shows the graph and
handles the mouse clicks and drags for the
editing commands.

• Application programmers need not subclass
these classes

Framework instance

• Simple application
• Draw black and white nodes
• Join nodes with straight lines

Shopping List

• For each node and edge type, define a
class that implements the Node or Edge
interface type

• Supply all required methods, such as
drawing and containment testing.

• Define a subclass of the Graph class and
supply getNodePrototypes,
getEdgePrototypes

• Supply a class with a main method

5

Big Picture Code

Ch8/graphed/SimpleGraph.java
Ch8/graphed/SimpleGraphEditor.java
Ch8/graphed/CircleNode.java
Ch8/graphed/LineEdge.java

Adding new edges
• First check if mouse was pressed inside existing node
public Node findNode(Point2D p)
{

for (int i = 0; i < nodes.size(); i++)
{
Node n = (Node) nodes.get(i);
if (n.contains(p)) return n;

}
return null;

}

6

New edges

• mousePressed:
– Check if mouse point inside node
– Check if current tool is edge
– Mouse point is start of rubber band

• mouseDragged:
– Mouse point is end of rubber band; repaint

• mouseReleased:
– Add edge to graph

Extending the framework

• Edit node/edge properties
– Node colors
– Edge styles (solid/dotted)

• Framework enhancement:
Edit->Properties menu pops up property
dialog

7

How?

• How to implement the dialog?

Idea

• Solved in chapter 7--bean properties!
• CircleNode exposes color property:
Color getColor()
void setColor(Color newValue)

• Property editor automatically edits color!

Others
• Add dotted lines
• Define enumerated type LineStyle
• Two instances LineStyle.SOLID,

LineStyle.DOTTED
• Add lineStyle property to LineEdge
• LineStyle has method getStroke()
• LineEdge.draw calls getStroke()
• Supply property editor for LineStyle type
• Property editor now edits line style!

Next time

• Rest of chapter 8
• Will also start some advanced topics
• Will be releasing extra credit assignment

