CS1007: Object Oriented Design
and Programming in Java

Lecture #18
Dec 1

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

» Frameworks
— Approach
— Requirements
— Code examples

— Reading: Chapter 8.2-8.5

Graph editor framework

Traditional approach: programmer starts
from scratch for every editor type

Framework approach: Programmer
extends graph, node, edge classes

Framework handles Ul, load/save, ...
Our framework is kept simple
Violet uses extension of this framework

Requirements

« What are the GUI requirements?
* What are the programming requirements?




Ul

Toolbar on top

Grabber button for selecting nodes/edges
Buttons for current node/edge type

Menu

Drawing area

File Edit

Mouse Control

Click on empty space: current node
inserted

Click on node or edge: select it

Drag node when current tool an edge:
connect nodes

Drag node when current tool not an edge:
move node

Divide the work

Divide code between
— framework
— specific application

Rendering is app specific (e.g. transistor)
Hit testing is app specific (odd node shapes)
Framework draws toolbar

Framework does mouse listening




Adding nodes

Framework draws toolbar

How does it know what nodes/edges to
draw?

App gives a list of nodes/edges to
framework at startup

How does app specify nodes/edges?

— Class names? ("Transistor")

— Class objects? (Transistor.class)

— Node, Edge objects? (new Transistor())

* Objects are more flexible than classes
new CircleNode(Color.BLACK)
new CircleNode(Color.WHITE)

* When user inserts new node, the toolbar node is
cloned

» Node prototype = node of currently selected
toolbar button;

» Node newNode = (Node) prototype.clone();
» Point2D mousePoint = current mouse position;
» graph.add(newNode, mousePoint);

Framework Classes

Framework programmer implements Node/Edge
interfaces

draw draws node/edge

getBounds returns enclosing rectangle (to
compute total graph size for scrolling)

Edge.getStart, getEnd yield start/end nodes

Node.getConnectionPoint computes attachment
point on shape boundary

Edge.getConnectionPoints yields start/end
coordinates (for grabbers)

clone overridden to be public

Code

» AbstractEdge class for convenience

» Programmer implements Node/Edge type
or extends AbstractEdge

Ch8/graphed/Node. java
Ch8/graphed/Edge . java
Ch8/graphed/AbstractEdge. java




« Graph collects nodes and edges

» Subclasses override methods
public abstract Node[] getNodePrototypes()
public abstract Edge[] getEdgePrototypes()

Ch8/graphed/Graph.java

Framework Ul

GraphFrame: a frame that manages the toolbar,
the menu bar, and the graph panel.

ToolBar: a panel that holds toggle buttons for the
node and edge icons.

GraphPanel: a panel that shows the graph and
handles the mouse clicks and drags for the
editing commands.

Application programmers need not subclass
these classes

Framework instance

« Simple application
« Draw black and white nodes
« Join nodes with straight lines

Shopping List

For each node and edge type, define a
class that implements the Node or Edge
interface type

Supply all required methods, such as
drawing and containment testing.

Define a subclass of the Graph class and
supply getNodePrototypes,
getEdgePrototypes

Supply a class with a main method




Big Picture

Code

B | | Srete Chte Lhe Ch8/graphed/SimpleGraph.java
Editor =
Ch8/graphed/SimpleGraphEditor.java
. . Ch8/graphed/CircleNode.java
raph raph | Gm Lo . .
Frame e _ :., i Ch8/graphed/LineEdge.java
2
=interfaces
Nede
ToolBar "i"?:g“:e" o]
Abstract
Edge
Adding new edges
mouse Mouse g - prototype - Gr : i . e
listener Event ool ‘ Node Eom « First check if mouse was pressed inside existing node
T T T public Node findNode(Point2D p)
M etPaint 1 E E {
] i 1 for (int i1 = 0; 1 < nodes.size(); i++)
getSelelcteaTool ] : i {
' U ' ' Node n = (Node) nodes.get(i);
clone . if (n.contains(p)) return n;
sla ! : ¥
i ] u return null;
1 . 3




New edges

¢ mousePressed:

— Check if mouse point inside node

— Check if current tool is edge

— Mouse point is start of rubber band
* mouseDragged:

— Mouse point is end of rubber band; repaint
¢ mouseReleased:

— Add edge to graph

L
b

Extending the framework

« Edit node/edge properties
— Node colors

— Edge styles (solid/dotted)

* Framework enhancement:

Edit->Properties menu pops up property
dialog

3]

File Edit

(2] e T pesimsins
ok |




How? Idea

* How to implement the dialog?  Solved in chapter 7--bean properties!

« CircleNode exposes color property:
Color getColor(Q
void setColor(Color newValue)

» Property editor automatically edits color!

Others Next time

+ Add dotted lines » Rest of chapter 8

* Define enumerated type LineStyle « Will also start some advanced topics
« Two instances LineStyle.SOLID,

LineStyle.DOTTED » Will be releasing extra credit assignment
e Add lineStyle property to LineEdge
 LineStyle has method getStroke()
« LineEdge.draw calls getStroke()
¢ Supply property editor for LineStyle type
« Property editor now edits line style!




