Outline

» Frameworks
CS1007: Object Oriented Design * Design considerations
and Programming in Java

Lecture #17

Nov 29 Reading: chapter 8.3+
Shlomo Hershkop

shlomo@cs.columbia.edu

Announcements Collections

* Next week last week of classes
—Would like to wrap up
— Have one class of advanced topics

« Final scheduled for 12/20 (Tuesday)
1-4pm
— Will have review
— Will post sample online

 Besides basic functionality of a
programming language, JAVA includes
many bundled libraries
— Advantage: no need to reinvent the wheel
— Disadvantage: square wheels ©

Collections

» Java library supplies standard data structures

¢ Supplies useful services (e.g. Collections.sort,
Collections.shuffle)

« Framework: Programmers can supply additional
data structures, services

« New data structures automatically work with
services

* New services automatically work with data
structures (hopefully)

Interfaces

Collection: the most general collection
interface type

Set: an unordered collection that does not
permit duplicate elements

SortedSet: a set whose elements are
visited in sorted order

List: an ordered collection

Some samples

* HashSet: a set implementation that uses
hashing to locate the set elements

« TreeSet: a sorted set implementation that
stores the elements in a balanced binary
tree

« LinkedList and ArrayList: two
implementations of the List interface type

«interfaces
Caollection

.3
|

HashSet

ainterface» «interface»
Set List

TreeSet

«interfacen _ _
Slr;:ej;; ArrayList LinkedList

Collection interface Iterator interface

boolean add(E obj) .
boolean addAll(Col lection c) « lterator traverses elements of collection
void clear()

boolean contains(E obj)

boolean containsAll(Collection c)

boolean equals(E obj) bOOlean haSNeXt()
int hashCode()

boolean isEmpty() E neXt()

Iterator iterator() _

boolean remove(E obj) V0|d remove()

boolean removeAll(Collection c)
boolean retainAll(Collection c)
int sizeQ

E[] toArray(Q

E[] toArray(E[] a)

Abstract collection Extend abstract collection

Collection is a hefty interface

Convenient for clients, inconvenient for implementers

Many methods can be implemented from others (Template method!)
Example: toArray

« Can't place template methods in interface
» Place them in AbstractCollection class

2“““0 ELl toarray() » AbstractCollection convenient superclass
E[]1 result = new E[size(Q]1: for implementors
Iterator e = iterator(); . . .
for (int i = 0; e.hasNext(); i++) » Only two methods undefined: size,iterator

result[i] = e.next(Q);
return result;

Adding something new

« Use queue from chapter 3

« Supply an iterator (with do-nothing remove
method)

< add method always returns true
Ch8/queue/Queue. java
Ch8/queue/QueueTester. java

Sets

» Set interface has no methods !!!!
Why?

» Conceptually, sets are a subtype of
collections

» Sets don't store duplicates of the same

element
» Sets are unordered

Lists

* Lists are ordered
« Each list position can be accessed by an integer index
¢ Subtype methods:

boolean add(int index, E obj)

boolean addAll(int index, Collection c)
E get(int index)

int indexOf(E obj)

int lastindexOf(E obj)

Listlterator listlterator()

Listlterator listlterator(int index)

E remove(int index)

E set(int index, int E)

List subList(int fromlndex, int tolndex)

Iterating lists

int nextlndex()

int previouslndex()
boolean hasPrevious()
E previous(Q)

void set(E obj)

List Classes

« ArrayList Cotertion g-=i-g

« LinkedList] ‘I

* Indexed access of linked list elements is :
possible, but slow iy -l 'E}?:

* Problem/weakness in the design 7

s Partial fix in Java 1.4: RandomAccess | | |
interface “E{L;;:E“ 4 ArrayList LinkedList

Options Views

Many operations tagged as "optional”

Example: Collection.add,
Collection.remove

Default implementation throws exception
Why have optional operations?

 View = collection that shows objects that
are stored elsewhere

» Example: Arrays.asList
* String[] strings = { "Kenya", "Thailand",
"Portugal" };
List view = Arrays.asList(strings)
» Does not copy elements!
» Can use view for common services
otherList.addAll(view);

Views

« get/set are defined to access underlying array

» Arrays.asList view has no add/remove operations
¢ Can't grow/shrink underlying array

» Several kinds of views:

read-only

modifyable

resizable

« Optional operations avoid inflation of interfaces
« Controversial design decision

Graphs

* Nodes/vertices
» Edges

Graphs

« Entire branch of Computer Science
— lots of fun!
— Lots of math
— Very relevant

Graph Editor Framework

* Problem domain: interactive editing of diagrams
» Graph consists of nodes and edges

* Class diagram:

nodes are rectangles

edges are arrows

« Electronic circuit diagram:

nodes are transistors, resistors

edges are wires

Graph editor framework

Traditional approach: programmer starts
from scratch for every editor type

Framework approach: Programmer
extends graph, node, edge classes

Framework handles Ul, load/save, ...
Our framework is kept simple
Violet uses extension of this framework

Requirements

» What are the GUI requirements?
* What are the programming requirements?

Ul

Toolbar on top

Grabber button for selecting nodes/edges
Buttons for current node/edge type

Menu

Drawing area

Next time
* Wrap up the framework example

» Over view of software engineering related
to OOD.

» Reading: finish chapter 8.

