
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #16
Nov 22

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Java beans
• Applets

• Reading: finish chapter 7, starting 8

Announcements 

• 4 more lectures after today
• 1 more homework after today (no actual 

code needed).
• Plan
• No class Thursday (or office hours).

Feedback 

• Questions on concepts
– Please stop me and I can give more 

examples
• Generic example

– Will review some more
• Homework help

– Will try to help later in class



2

Generics 

• Generally when you manipulate a group of 
objects, in order for the compiler to be 
aware of the manipulations (error 
checking) you need to explicitly cast the 
general objects you are working with.

List myints = new LinkedList();
myints.add(new Integer(3));
Integer x = (Integer)myints.iterator().next();

Errors runtime

• When manipulating objects and casting, if 
you make a mistake on what you think is 
in a collection, will throw errors.

Idea 

• Allow you to tell the compiler what you are 
thinking…

List<Integer> myints = new 
LinkedList<Integer>();

//adding same
Integer x = myints.iterator().next();

Another advantage

• Allows you to program algorithms which 
don’t work in the dark

• Allows you to setup constraints on the 
objects you allow to be passed to your 
methods



3

wildcarding

• Allows you specify general types and 
bounded general types in your algorithms

Map <String, ? extends employee>

Confused?

• Please review book
• Please review last lecture
• Email myself/TAs
• Can ask other students
• Use internet (not responsible for anything 

you happen to dig up there).

Introducing Java Beans

• Java component model
• Bean has

– methods (just like classes)
– properties
– events



4

Property sheet

Façade class

• Bean usually composed of multiple 
classes

• One class nominated as facade class
• Clients use only facade class methods

What kind of pattern can we 
extract?

• A subsystem consists of multiple classes, 
making it complicated for clients to use

• Implementor may want to change 
subsystem classes

• Want to give a coherent entry point



5

How JAVABEAN does it

• Define a facade class that exposes all 
capabilities of the subsystem as methods

• The facade methods delegate requests to 
the subsystem classes

• The subsystem classes do not know about 
the facade class

Bean Properties

• Property = value that you can get and/or 
set

• Most properties are get-and-set
• Can also have get-only and set-only
• Property not the same as instance field
• Setter can set fields, then call repaint
• Getter can query database

Syntax

• Not Java :-(
• C#, JavaScript, Visual Basic
• b.propertyName = value

calls setter
• variable = b.propertyName

calls getter



6

Conventions
• property = pair of methods
public X getPropertyName()
public void setPropertyName(X newValue)
• Replace propertyName with actual name
(e.g. getColor/setColor)
• Exception for boolean properties:
public boolean isPropertyName()
• Decapitalization hokus-pokus:
getColor -> color
getURL -> URL

Builder tool

Packaging 

• Compile bean classes
Ch7/carbean/CarBean.java
• Create manifest file
Ch7/carbean/CarBean.mf
• Run JAR tool:
• jar cvfm CarBean.jar CarBean.mf *.class
• Import JAR file into builder environment



7

Composing Bean

• Make new frame
• Add car bean, slider to frame
• Edit stateChanged event of slider
• Add handler code
carBean1.setX(jSlider1.getValue());
• Compile and run
• Move slider: the car moves

Framework

• Set of cooperating classes
• Structures the essential mechanisms of a 

problem domain
• Example: Swing is a GUI framework
• Framework != design pattern
• Typical framework uses multiple design 

patterns

Application framework

• Implements services common to a type of 
applications

• Programmer forms subclasses of 
framework classes

• Result is an application
• Inversion of control: framework controls 

execution flow



8

Applet

• Applet: Java program that runs in a web 
browser

• Programmer forms subclass of Applet or 
JApplet

• Overwrites
– init/destroy
– start/stop
– paint

Openscience.org/jmol

Applets
• Interacts with ambient browser
getParameter
showDocument
• HTML page contains applet tag and parameters
<applet code="BannerApplet.class" 
width="300" height="100"> 
<param name="message" value="Hello, 

World!"/> 
<param name="fontname" value="Serif"/> 
<param name="fontsize" value="64"/> 
<param name="delay" value="10"/> 

</applet> 

Example 

• Shows scrolling banner
• init reads parameters
• start/stop start and stop timer
• paint paints the applet surface
Ch8/applet/BannerApplet.java



9

Next 

• Finish homework
– Please email me if you get stuck/clarrifications

• Do reading
– Chapter 8 – 8.5


