
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #14
Nov 15

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline
• Java implementation of Objects
• Types
• wrappers
• Testing types
• Object class
• Hashes
• Copy
• Reading 7-7.4

– next time 7.4-7.8

Mistake

• I meant to skip chap 6, and do 7-7.4 last
class.

• Oops, still need to know 6-6.4

• Will cover 7-7.4 today.

Announcement

• Homework 3 was released
• Due Nov 27 midnight

• Open ended….please adopt it to your
needs
– Need to document design
– Need to fulfill basic requirements of

assignment

2

Types

• A set of values and operations with those
values.

Strongly typed language

• Strongly typed language: compiler and run-time
system check that no operation can execute that
violates type system rules

• Compile-time check
Employee e = new Employee();
e.clear(); // ERROR

• Run-time check:
e = null;
e.setSalary(200); // ERROR

Java view of Types
• Primitive types:
int short long byte
char float double boolean
• Class types
• Interface types
• Array types
• The null type
• Note:

– void is not a type

Values

• value of primitive type
• reference to object of class type
• reference to array
• null
• Note: Can't have value of interface type

3

Subtypes
• S is a subtype of T if:
• S and T are the same type
• S and T are both class types, and T is a direct or indirect

superclass of S
• S is a class type, T is an interface type, and S or one of

its superclasses implements T
• S and T are both interface types, and T is a direct or

indirect superinterface of S
• S and T are both array types, and the component type of

S is a subtype of the component type of T
• S is not a primitive type and T is the type Object
• S is an array type and T is Cloneable or Serializable
• S is the null type and T is not a primitive type

Examples
• Container is a subtype of Component
• JButton is a subtype of Component
• FlowLayout is a subtype of LayoutManager
• ListIterator is a subtype of Iterator
• Rectangle[] is a subtype of Shape[]
• int[] is a subtype of Object
• int is not a subtype of long
• long is not a subtype of int
• int[] is not a subtype of Object[]

Exception!
• Rectangle[] is a subtype of Shape[]
• Can assign Rectangle[] value to Shape[] variable:
Rectangle[] r = new Rectangle[10];
Shape[] s = r;
• Both r and s are references to the same array
• That array holds rectangles
• The assignment
s[0] = new Polygon();
• compiles
• Throws an ArrayStoreException at runtime
• Each array remembers its component type

4

Wrapping

• Primitive types aren't classes
• Use wrappers when objects are expected
• Wrapper for each type:

Integer Short Long Byte
Character Float Double Boolean

Before java 1.5

Integer A = new Integer(5);
…
Int x = A.intValue();

1.5

• Auto-boxing and auto-unboxing
• Integer X = 5;
ArrayList<Integer> numbers = new
ArrayList<Integer>();

numbers.add(13);

int n = numbers.get(0);

5

Enumerated
• Finite set of values
• Example: enum Size { SMALL, MEDIUM,

LARGE }
• Typical use:
Size imageSize = Size.MEDIUM;
if (imageSize == Size.SMALL) . . .
• Safer than integer constants
public static final int SMALL = 1;
public static final int MEDIUM = 2;
public static final int LARGE = 3;

Typesafe Enumeration
• enum equivalent to class with fixed number of instances
public class Size
{

private /* ! */ Size() { }
public static final Size SMALL = new Size();
public static final Size MEDIUM = new Size();
public static final Size LARGE = new Size();

}

• enum types are classes; can add methods, fields,
constructors

• Enum API

Object testing

• Object O = ????

• How do we figure out what we are dealing
with?

Type Inquiry

• Test whether e is a Shape:
if (e instanceof Shape) . . .
• Common before casts:
Shape s = (Shape) e;
• Don't know exact type of e
• Could be any class implementing Shape
• If e is null, test returns false (no exception)

6

Plain old class
• getClass method gets class of any object
• Returns object of type Class
• Class object describes a type
Object e = new Rectangle();
Class c = e.getClass();
System.out.println(c.getName()); // prints

java.awt.Rectangle
• Class.forName method yields Class object:
Class c = Class.forName("java.awt.Rectangle");
• .class suffix yields Class object:
Class c = Rectangle.class; // java.awt prefix not needed
• Class is a misnomer, since also works for primitives

int.class
void.class
Shape.class

An Employee Object vs. the
Employee.class Object

Checking Type

• Test whether e is a Rectangle:
if (e.getClass() == Rectangle.class) . . .
• Ok to use ==
• A unique Class object for every class
• Test fails for subclasses
• Use instanceof to test for subtypes:

– if (e instanceof Rectangle) . . .

Array Types
• Can apply getClass to an array
• Returned object describes an array type
double[] a = new double[10];
Class c = a.getClass();
if (c.isArray())

System.out.println(c.getComponentType());

• getName produces strange names for array types
[Z for boolean[]
[D for double[])
[[java.lang.String; for String[][]

7

SUPERclass

• All classes extend Object
• Most useful methods:

– String toString()
– boolean equals(Object otherObject)
– Object clone()
– int hashCode()

toString
• Returns a string representation of the object
• Useful for debugging
• Example: Rectangle.toString returns something like
java.awt.Rectangle[x=5,y=10,width=20,height=30]
• toString used by concatenation operator
• aString + anObject
means
aString + anObject.toString()
• Object.toString prints class name and object address

System.out.println(System.out) yields
java.io.PrintStream@d2460bf
• Implementor of PrintStream didn't override toString:

Overriding toString
• Format all fields:
public class Employee
{

public String toString()
{

return getClass().getName()
+ "[name=" + name
+ ",salary=" + salary
+ "]";

}
...

}

• Typical string:
Employee[name=Harry Hacker,salary=35000]

Subclass toString
• Format superclass first
public class Manager extends Employee
{

public String toString()
{

return super.toString()
+ "[department=" + department +

"]";
}
...

}
• Typical string
Manager[name=Dolly Dollar,salary=100000][department=Finance]

8

equals

• equals tests for equal contents
• == tests for equal location

– i.e. is it the same object (for classes)
– Different than comparing two primitives

• Used in many standard library methods
• Example: ArrayList.indexOf

• Unique to your class implimentation

/**
Searches for the first occurrence of the given argument,
testing for equality using the equals method.
@param elem an object.
@return the index of the first occurrence
of the argument in this list; returns -1 if
the object is not found.

*/
public int indexOf(Object elem)
{

if (elem == null)
{

for (int i = 0; i < size; i++)
if (elementData[i] == null) return i;

}
else
{

for (int i = 0; i < size; i++)
if (elem.equals(elementData[i])) return i;

}
return -1;

}

Overriding equals
• Notion of equality depends on class
• Common definition: compare all fields
public class Employee
{

public boolean equals(Object otherObject)
// not complete--see below

{
Employee other = (Employee)otherObject;
return name.equals(other.name)

&& salary == other.salary;
}
...

}
• Must cast the Object parameter to subclass
• Use == for primitive types, equals for object fields

Equals in subclass
• Call equals on superclass
public class Manager
{

public boolean equals(Object otherObject)
{

Manager other = (Manager)otherObject;
return super.equals(other)

&&
department.equals(other.department);
}

}

9

Not so easy
• Two sets are equal if they have the same elements in

some order
public boolean equals(Object o)
{

if (o == this) return true;
if (!(o instanceof Set)) return false;
Collection c = (Collection) o;
if (c.size() != size()) return false;
return containsAll(c);

}

Object.equals
• Object.equals tests for identity:

public class Object
{

public boolean equals(Object obj)
{

return this == obj;
}
...

}

• Override equals if you don't want to inherit that behavior

Requirements

• reflexive: x.equals(x)
• symmetric: x.equals(y) if and only if

y.equals(x)
• transitive: if x.equals(y) and y.equals(z),

then x.equals(z)
• x.equals(null) must return false

Employee.equals

• What does it mean ?

10

simple

• Check for same name and salary?

• Check for id?

fixing
• Violates two rules
• Add test for null:
if (otherObject == null) return false
• What happens if otherObject not an Employee
• Should return false (because of symmetry)
• Common error: use of instanceof
if (!(otherObject instanceof Employee)) return false;

// don't do this for non-final classes
• Violates symmetry: Suppose e, m have same name, salary
e.equals(m) is true (because m instanceof Employee)
m.equals(e) is false (because e isn't an instance of Manager)
• Remedy: Test for class equality
if (getClass() != otherObject.getClass()) return false;

Best practice
• Start with these three tests:

public boolean equals(Object otherObject)
{

if (this == otherObject) return true;
if (otherObject == null) return false;
if (getClass() != otherObject.getClass())

return false;
...

}

• First test is an optimization

Hashing

11

Hashing Components

• Hash table
• Hash function
• Collision
• Load

Hashing

• hashCode method used in HashMap, HashSet
• Computes an int from an object
• Example: hash code of String
int h = 0;
for (int i = 0; i < s.length(); i++)

h = 31 * h + s.charAt(i);
• Hash code of "eat" is 100184
• Hash code of "tea" is 114704

Hashing
• Must be compatible with equals:
if x.equals(y), then x.hashCode() == y.hashCode()
• Object.hashCode hashes memory address
• NOT compatible with redefined equals
• Remedy: Hash all fields and combine codes:

public class Employee
{

public int hashCode()
{

return name.hashCode()
+ new Double(salary).hashCode();

}
...

}

Shallow vs. Deep Copy

• Assignment (copy = e) makes shallow
copy

• Clone to make deep copy
• Employee cloned = (Employee)e.clone();

12

Cloning
• Object.clone makes new object and copies all fields
• Cloning is subtle
• Object.clone is protected
• Subclass must redefine clone to be public

public class Employee
{

public Object clone()
{

return super.clone(); // not complete
}
...

}

Cloneable Interface
• Object.clone is nervous about cloning
• Will only clone objects that implement Cloneable interface

public interface Cloneable
{
}

• Interface has no methods!
• Tagging interface--used in test
if x implements Cloneable
• Object.clone throws CloneNotSupportedException
• A checked exception

clone
public class Employee
implements Cloneable

{
public Object clone()
{

try
{

return super.clone();
}
catch(CloneNotSupportedException e)
{

return null; // won't happen
}

}
...

}

13

Deep cloning
• Why doesn't clone make a deep copy?
• Wouldn't work for cyclic data structures
• Not a problem for immutable fields
• You must clone mutable fields

public class Employee
implements Cloneable

{
public Object clone()
{

try
{

Employee cloned = (Employee)super.clone();
cloned.hireDate = (Date)hiredate.clone();
return cloned;

}
catch(CloneNotSupportedException e)
{

return null; // won't happen
}

}
...

}

Cloning and Inheritance
• Object.clone is paranoid

– clone is protected
– clone only clones Cloneable objects
– clone throws checked exception

• You don't have that luxury
• Manager.clone must be defined if Manager adds

mutable fields
• Rule of thumb: if you extend a class that defines clone,

redefine clone
• Lesson to learn: Tagging interfaces are inherited. Use

them only to tag properties that inherit

14

Next Time

• Continue reading

• Start homework

