
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #13
Nov 10

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Inheritance
• Objects
• Mouse listeners
• Car shape example

Announcements

• Next homework will be posted tomorrow.
– See website

public class Employee
{

public Employee(String aName) { name = aName; }
public void setSalary(double aSalary)

{ salary = aSalary; }
public String getName() { return name; }
public double getSalary() { return salary; }

private String name;
private double salary;

}

2

How do we specialize the class?

• Manager class adds new method:
setBonus

• Manager class overrides existing method:
getSalary

• Adds salary and bonus

Overriding methods

• methods setSalary, getname (inherited
from Employee)

• method getSalary (overridden in Manager)
• method setBonus (defined in Manager)
• fields name and salary (defined in

Employee)
• field bonus (defined in Manager)

• Why is Manager a subclass?
• Isn't a Manager superior?
• Doesn't a Manager object have more

fields?
• The set of managers is a subset of the set

of employees

Inheritance Hierarchies

• Real world: Hierarchies describe
general/specific relationships
– General concept at root of tree
– More specific concepts are children

• Programming: Inheritance hierarchy
– General superclass at root of tree
– More specific subclasses are children

3

Substitution Principle
• Formulated by Barbara Liskov
• You can use a subclass object whenever a

superclass object is expected
Example:
Employee e;
...
System.out.println("salary=" + e.getSalary());
• Can set e to Manager reference
• Polymorphism: Correct getSalary method is

invoked

Dealing with superclass
• Can't access private fields of superclass
public class Manager extends Employee
{

public double getSalary()
{

return salary + bonus; // ERROR--private field
}
...

}
• Be careful when calling superclass method
public double getSalary()
{

return getSalary() + bonus; // ERROR--recursive
call
}

super

• Use super keyword
public double getSalary()
{

return super.getSalary() + bonus;
}

• super is not a reference
• super turns off polymorphic call

mechanism

4

Super constructors
• Use super keyword in subclass constructor:

public Manager(String aName)
{
super(aName); // calls superclass constructor
bonus = 0;
}

• Call to super must be first statement in subclass
constructor

• If subclass constructor doesn't call super,
superclass must have constructor without
parameters

Dealing with preconditions
• Precondition of redefined method at most as strong
public class Employee
{

/**
Sets the employee salary to a given value.
@param aSalary the new salary
@precondition aSalary > 0

*/
public void setSalary(double aSalary) { ... }

}

• Can we redefine Manager.setSalary with precondition
salary > 100000?
• No--Could be defeated:

Manager m = new Manager();
Employee e = m;
e.setSalary(50000);

Post conditions
• Postcondition of redefined method at least as

strong
• Example: Employee.setSalary promises not to

decrease salary
• Then Manager.setSalary must fulfill

postcondition
• Redefined method cannot be more private.

(Common error: omit public when redefining)
• Redefined method cannot throw more checked

exceptions

Extending jcomponent

public class foo extends JComponent
{

public void paintComponent(Graphics g)
{

drawing instructions go here
}
...

}

5

Mouse listeners

• Attach mouse listener to component
• Can listen to mouse events (clicks) or

mouse motion events

• Anyone know how?

Interface!
public interface MouseListener
{

void mouseClicked(MouseEvent event);
void mousePressed(MouseEvent event);
void mouseReleased(MouseEvent event);
void mouseEntered(MouseEvent event);
void mouseExited(MouseEvent event);

}

public interface MouseMotionListener
{

void mouseMoved(MouseEvent event);
void mouseDragged(MouseEvent event);

}

• Includes a lot

• What if you just want part of it?

Extend MouseAdapter
public class MouseAdapter implements MouseListener
{

public void mouseClicked(MouseEvent event) {}
public void mousePressed(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseEntered(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}

}

6

usage

addMouseListener(new
MouseAdapter()
{

public void mousePressed(MouseEvent event)
{

mouse action goes here
}

});

Example: Car Mover Program

• Ch6/car/CarComponent.java
• Ch6/car/CarMover.java
• Ch6/car/CarShape.java

Next Time

• Do reading, start Homework

