
1

CS1007: Object Oriented Design
and Programming in Java

Lecture #12
Nov 1

Shlomo Hershkop
shlomo@cs.columbia.edu

Outline

• Custom Layout manager code
• More patterns
• Recognizing Patterns

• Reading: 5.4.2 - 5.8

Announcements

• Reminder: next Tuesday election day,
university holiday (no class).

• Next class (Thursday) will meet in lab
– Again if you don’t have a cs account, please

bring a laptop.

Containers and Components

• Containers collect GUI components
– JPanel holds

• JButtons
• JLabels
• JTextfields

• Sometimes, want to add a container to
another container

• Container should act as a component

2

Important

• Composite design pattern
• Composite method typically invoke

component methods
E.g. Container.getPreferredSize

invokes getPreferredSize of
components

Composite Pattern

Problem:
• Primitive objects can be combined to

composite objects
• Clients treat a composite object as a

primitive object

Idea

1. Define an interface type that is an abstraction
for the primitive objects

2. Composite object collects primitive objects
3. Composite and primitive classes implement

same interface type.
4. When implementing a method from the

interface type, the composite class applies the
method to its primitive objects and combines
the results

Leaf = low level component

3

Design layout manager

• All layout managers implement the same
interface

• First we need to identify what our layout
manager goals are.

Custom Layouts

• Form layout
• Odd-numbered components right aligned
• Even-numbered components left aligned
• Implement LayoutManager interface type

LayoutManager Interface
public interface LayoutManager
{

void layoutContainer(Container parent);
Dimension minimumLayoutSize(Container parent);
Dimension preferredLayoutSize(Container parent);
void addLayoutComponent(String name, Component
comp);
void removeLayoutComponent(Component comp);

}

Form Layout

• Ch5/layout/FormLayout.java
• Ch5/layout/FormLayoutTester.java
• Note: Can use GridBagLayout to achieve

the same effect

4

Plan

• Pluggable strategy for layout management
• Layout manager object responsible for

executing concrete strategy
• Generalizes to Strategy Design Pattern
• Other manifestation: Comparators

Comparator<Country> comp = new CountryComparatorByName();

Collections.sort(countries, comp);

Objective

1. A class can benefit from different
variants for an algorithm

2. Clients sometimes want to replace
standard algorithms with custom
versions

Solution

• Define an interface type that is an
abstraction for the algorithm

• Actual strategy classes realize this
interface type.

• Clients can supply strategy objects
• Whenever the algorithm needs to be

executed, the context class calls the
appropriate methods of the strategy object

In short

• PLUG AND PRAY

5

Practical Example

• JPanel/Screen resolution certain size
• Want to display large components …even

larger than JPanel

• Ideas?

ScrollBar

ScrollBars

• Scroll bars can be attached to components
• Approach #1: Component class can turn

on scroll bars if too large
• Approach #2: Scroll bars can surround

component by user

JScrollPane pane = new
JScrollPane(component);

• Swing uses approach #2
• JScrollPane is again a component

6

Decorator Pattern

1. Component objects can be decorated
(visually or behaviorally enhanced)

2. The decorated object can be used in the
same way as the undecorated object

3. The component class does not want to
take on the responsibility of the
decoration

4. There may be an open-ended set of
possible decorations

Idea
1. Define an interface type that is an abstraction for the

component
2. Concrete component classes realize this interface

type.
3. Decorator classes also realize this interface type.
4. A decorator object manages the component object that

it decorates
5. When implementing a method from the component

interface type, the decorator class applies the method
to the decorated component and combines the result
with the effect of the decoration.

7

Stream Patterns
• InputStreamReader reader = new
InputStreamReader(System.in);

• BufferedReader console = new
BufferedReader(reader);

• BufferedReader takes a Reader and adds
buffering

• Result is another Reader: Decorator pattern
• Many other decorators in stream library, e.g.

PrintWriter

Decorator Pattern: Input Streams

readmethod()

BufferedReaderDecorator

InputStreamReaderConcreteComponent

ReaderComponent

Actual Name (input
streams)

Name in Design Pattern

How to Recognize Patterns

• Look at the intent of the pattern
• E.g. COMPOSITE has different intent than

DECORATOR
• Remember common uses (e.g.

STRATEGY for layout managers)
• Not everything that is strategic is an

example of STRATEGY pattern
• Use context and solution as "litmus test"

Example

• Can add border to Swing component
Border b = new EtchedBorder()
component.setBorder(b);
• Undeniably decorative
• Is it an example of DECORATOR?

8

Litmus Test
1. Component objects can be decorated (visually

or behaviorally enhanced)
PASS

2. The decorated object can be used in the same
way as the undecorated object
PASS

3. The component class does not want to take on
the responsibility of the decoration
FAIL--the component class has setBorder method

4. There may be an open-ended set of possible
decorations

Using Patterns

• Invoice contains line items
• Line item has description, price
• Interface type LineItem:
Ch5/invoice/LineItem.java
• Product is a concrete class that

implements this interface:
Ch5/invoice/Product.java

Bundles

• Bundle = set of related items with
description+price

• E.g. stereo system with tuner, amplifier,
CD player + speakers

• A bundle has line items
• A bundle is a line item
• COMPOSITE pattern
Ch5/invoice/Bundle.java (look at getPrice)

9

Discounted Items

• Store may give discount for an item
• Discounted item is again an item
• DECORATOR pattern
• Ch5/invoice/DiscountedItem.java (look at

getPrice)
• Alternative design: add discount to

LineItem

Model View Separation

• GUI has commands to add items to
invoice

• GUI displays invoice
• Decouple input from display
• Display wants to know when invoice is

modified
• Display doesn't care which command

modified invoice
• OBSERVER pattern

Change Listener
• Use standard ChangeListener interface type
public interface ChangeListener
{

void stateChanged(ChangeEvent event);
}
• Invoice collects ArrayList of change listeners
• When the invoice changes, it notifies all listeners:
• ChangeEvent event = new ChangeEvent(this);
for (ChangeListener listener : listeners)

listener.stateChanged(event);

10

Question

• If you run a family tree program and create
your family tree in some java class form,
how do you keep it saved?

Idea:

• Allow the programmer to take a snapshot
of live memory, and save it in a binary
form…..

• No need to recreate classes

1. We need to tell java we want to save a
certain class

2. Save the class

java.io.Serializable

public class student implements Serializable
{

private String name;
private int age;

…
public String getName(){

return name;
}
}

Save routine
public static void main(String args[]) {

Student one = new Student….

try{

FileOutputStream fos = new FileOutputStream(“saved.data”);

ObjectOutputStream out = new ObjectOutputStream(fos);

out.writeObject(one);

out.close;

}catch(IOException ioe){ .. }

11

Load Routine
try{

FileInputStream fis = new FileInputStream(“saved.data”);

ObjectInputStream in = new ObjectInputStream(fis);

Student oldone = (Student)in.readObject();

}catch(IOException ioe) {…}

Important note

• Only objects which extend serializable can
be saved

• SO:
– If your class has field variables which don’t

implement this….

Two options

1. Mark those non serializable as ‘transient’
this tells the jvm not to save those
variables

2. Implement a custom writeObject and
readObject

can then choose which fields to save and
load, and initialize any others

Next Time

• Meet in lab

• Please see updated reading list on
schedule page of web, try to do reading
ahead of class.

