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CS1007: Object Oriented Design 
and Programming in Java

Lecture #11
Oct 27

Shlomo Hershkop
shlomo@cs.columbia.edu
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Outline

• Review of midterm
– Please feel free to ask if you don’t see 

something covered.
• On to chapter 5

• Reading: Chapter 5-5.4.1
• Next time: 5.4.2-5.8
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Midterm 

• Please see me if you are concerned about 
your grade..office hours or email me for 
appointment.

• Some fundamental concepts missing
• Will try to review and will start to address 

them in the course
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Public/Private classes

• Each .java file must contain one 
public/abstract class

• But can contain many private classes

• NOTE: if you got the private class marked 
wrong….please see me, I thought more 
people were aware of this fact.
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Constructors

• Are called when you instantiate object
• If nothing defined will default to () empty 

constructor
• Never returns anything
• Can call other constructors IF

– first line of constructor
• Usage:

– this( argument list )
6

Return values

• Java will in some case make believe there are 
parenthesis around something

Example:

public boolean Something(int a,int b){
return 5 + a == b;
}

Problem:
public boolean Something(int a,int b){

return 5 + a * 10  == b;
}
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Other issues with code example

• When to cast and when not
– Explicit vs. implicit

• Can define many methods and not use 
them at all
– Might be bad programming
– Not error
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3 way switch

• Simple class but had to keep track of 
current state

• Example:
ThreeWaySwitch A = new ….

• ThreeWaySwitch B = new ..
A.switch(5);
B.swtich(1);
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Exception handling

• If you are throwing an exception in the 
method, you need to make it part of the 
signature
– This doesn’t apply if it is contained…i.e. within 

and handled by try/catch block.
• Finally clause always handled (unless you 

kill the program).
– Many people didn’t understand the order of 

this.
10

Inheritance / Exception

• Order of catching exceptions important
– More general should always be caught last
– Else will have unreachable code.
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Course plan – After Midterm

• Take home lesson: this is a chance to 
make sure you are on track….please see 
me with any concerns

• Will balance Object oriented design 
(correct way) with fundamentals (what you 
can use).
i.e not just how to use a hammer correctly 
but also what kinds of hammers are 
available.
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Patterns

• Many times when programming large projects:
– Notice certain underlying patterns

– Example: email file

many different ways of representing email messages

but: end user will want to treat them the same way!

– Haha! A pattern
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Iterator Pattern

• Covered before midterm
• Collection of elements
• Users want to examine elements
• We don’t want to expose the underlying 

implementation
• Ability to allow multiple independent 

access
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Iterators pattern

• Define a general iterator that fetches one 
element at a time

• Each iterator object keeps track of the 
position of the next element

• If there are several collection/iterator
variations, it is best if the collection and 
Iterator classes realize common interface 
types.
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GUI programming

• Strong graphical component in java 
language.

• Very easy to create graphics and graphical 
components

• Because it is based on an Object Oriented 
Approach

• Again pattern based programming
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Observer Patterns 

• In many applications will have multiple 
views of the same data

• When you edit one part, affects other parts 
of the view

• Eclipse

18

Division of Labor

• Model: data structure, no visual 
representation

• Views: visual representations
• Controllers: user interaction

19

• Views/controllers update model
• Model tells views that data has changed
• Views redraw themselves

20
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Observer Pattern II
• Model notifies views when something interesting 

happens
• Button notifies action listeners when something 

interesting happens
• Views attach themselves to model in order to be 

notified
• Action listeners attach themselves to button in 

order to be notified
• Generalize: Observers attach themselves to 

subject
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Consider

1. An object, called the subject, is source of 
events

2. One or more observer objects want to be 
notified when such an event occurs.
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Idea

• Define an observer interface type. All 
concrete observers implement it.

• The subject maintains a collection of 
observers.

• The subject supplies methods for 
attaching and detaching observers.

• Whenever an event occurs, the subject 
notifies all observers.

24
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Layout Managers

• Set layout manager
JPanel keyPanel = new JPanel();
keyPanel.setLayout(new GridLayout(4, 3));

• Add components

for (int i = 0; i < 12; i++)
keyPanel.add(button[i]);

26
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GUI for Voicemail system

• Same backend as text-based system
• Only Telephone class changes
• Buttons for keypad
• Text areas for microphone, speaker

28
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Keys
• Arrange keys in panel with GridLayout:

JPanel keyPanel = new JPanel(); 
keyPanel.setLayout(new GridLayout(4, 3)); 
for (int i = 0; i < 12; i++) 
{ 

JButton keyButton = new JButton(...); 
keyPanel.add(keyButton); 
keyButton.addActionListener(...);

}
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• Panel with BorderLayout for speaker

JPanel speakerPanel = new JPanel(); 
speakerPanel.setLayout(new BorderLayout()); 
speakerPanel.add(new JLabel("Speaker:"), 
BorderLayout.NORTH); 

speakerField = new JTextArea(10, 25); 
speakerPanel.add(speakerField, 
BorderLayout.CENTER);

31 32



9

33

• Ch5/code/mailgui/Telephone.java.html

34

Custom Layouts

• Form layout
• Odd-numbered components right aligned
• Even-numbered components left aligned
• Implement LayoutManager interface type

35

LayoutManager Interface
public interface LayoutManager
{ 

void layoutContainer(Container parent); 
Dimension minimumLayoutSize(Container parent); 
Dimension preferredLayoutSize(Container parent); 
void addLayoutComponent(String name, Component 
comp); 
void removeLayoutComponent(Component comp); 

} 
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Form Layout

• Ch5/layout/FormLayout.java
• Ch5/layout/FormLayoutTester.java
• Note: Can use GridBagLayout to achieve 

the same effect
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Plan

• Pluggable strategy for layout management
• Layout manager object responsible for 

executing concrete strategy
• Generalizes to Strategy Design Pattern
• Other manifestation: Comparators

Comparator<Country> comp = new CountryComparatorByName();

Collections.sort(countries, comp);

38

Objective

1. A class can benefit from different 
variants for an algorithm

2. Clients sometimes want to replace 
standard algorithms with custom 
versions
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Solution

• Define an interface type that is an 
abstraction for the algorithm

• Actual strategy classes realize this 
interface type.

• Clients can supply strategy objects
• Whenever the algorithm needs to be 

executed, the context class calls the 
appropriate methods of the strategy object

40

In short

• PLUG AND PRAY



11

41

Next Time

• Do Reading (through 5.8)

• Review midterm to make sure you 
understand what went wrong.


