
1

1

CS1007: Object Oriented Design
and Programming in Java

Lecture #11
Oct 27

Shlomo Hershkop
shlomo@cs.columbia.edu

2

Outline

• Review of midterm
– Please feel free to ask if you don’t see

something covered.
• On to chapter 5

• Reading: Chapter 5-5.4.1
• Next time: 5.4.2-5.8

3

Midterm

• Please see me if you are concerned about
your grade..office hours or email me for
appointment.

• Some fundamental concepts missing
• Will try to review and will start to address

them in the course

4

Public/Private classes

• Each .java file must contain one
public/abstract class

• But can contain many private classes

• NOTE: if you got the private class marked
wrong….please see me, I thought more
people were aware of this fact.

2

5

Constructors

• Are called when you instantiate object
• If nothing defined will default to () empty

constructor
• Never returns anything
• Can call other constructors IF

– first line of constructor
• Usage:

– this(argument list)
6

Return values

• Java will in some case make believe there are
parenthesis around something

Example:

public boolean Something(int a,int b){
return 5 + a == b;
}

Problem:
public boolean Something(int a,int b){

return 5 + a * 10 == b;
}

7

Other issues with code example

• When to cast and when not
– Explicit vs. implicit

• Can define many methods and not use
them at all
– Might be bad programming
– Not error

8

3 way switch

• Simple class but had to keep track of
current state

• Example:
ThreeWaySwitch A = new ….

• ThreeWaySwitch B = new ..
A.switch(5);
B.swtich(1);

3

9

Exception handling

• If you are throwing an exception in the
method, you need to make it part of the
signature
– This doesn’t apply if it is contained…i.e. within

and handled by try/catch block.
• Finally clause always handled (unless you

kill the program).
– Many people didn’t understand the order of

this.
10

Inheritance / Exception

• Order of catching exceptions important
– More general should always be caught last
– Else will have unreachable code.

11

Course plan – After Midterm

• Take home lesson: this is a chance to
make sure you are on track….please see
me with any concerns

• Will balance Object oriented design
(correct way) with fundamentals (what you
can use).
i.e not just how to use a hammer correctly
but also what kinds of hammers are
available.

12

Patterns

• Many times when programming large projects:
– Notice certain underlying patterns

– Example: email file

many different ways of representing email messages

but: end user will want to treat them the same way!

– Haha! A pattern

4

13

Iterator Pattern

• Covered before midterm
• Collection of elements
• Users want to examine elements
• We don’t want to expose the underlying

implementation
• Ability to allow multiple independent

access

14

Iterators pattern

• Define a general iterator that fetches one
element at a time

• Each iterator object keeps track of the
position of the next element

• If there are several collection/iterator
variations, it is best if the collection and
Iterator classes realize common interface
types.

15 16

GUI programming

• Strong graphical component in java
language.

• Very easy to create graphics and graphical
components

• Because it is based on an Object Oriented
Approach

• Again pattern based programming

5

17

Observer Patterns

• In many applications will have multiple
views of the same data

• When you edit one part, affects other parts
of the view

• Eclipse

18

Division of Labor

• Model: data structure, no visual
representation

• Views: visual representations
• Controllers: user interaction

19

• Views/controllers update model
• Model tells views that data has changed
• Views redraw themselves

20

6

21

Observer Pattern II
• Model notifies views when something interesting

happens
• Button notifies action listeners when something

interesting happens
• Views attach themselves to model in order to be

notified
• Action listeners attach themselves to button in

order to be notified
• Generalize: Observers attach themselves to

subject

22

Consider

1. An object, called the subject, is source of
events

2. One or more observer objects want to be
notified when such an event occurs.

23

Idea

• Define an observer interface type. All
concrete observers implement it.

• The subject maintains a collection of
observers.

• The subject supplies methods for
attaching and detaching observers.

• Whenever an event occurs, the subject
notifies all observers.

24

7

25

Layout Managers

• Set layout manager
JPanel keyPanel = new JPanel();
keyPanel.setLayout(new GridLayout(4, 3));

• Add components

for (int i = 0; i < 12; i++)
keyPanel.add(button[i]);

26

27

GUI for Voicemail system

• Same backend as text-based system
• Only Telephone class changes
• Buttons for keypad
• Text areas for microphone, speaker

28

8

29

Keys
• Arrange keys in panel with GridLayout:

JPanel keyPanel = new JPanel();
keyPanel.setLayout(new GridLayout(4, 3));
for (int i = 0; i < 12; i++)
{

JButton keyButton = new JButton(...);
keyPanel.add(keyButton);
keyButton.addActionListener(...);

}

30

• Panel with BorderLayout for speaker

JPanel speakerPanel = new JPanel();
speakerPanel.setLayout(new BorderLayout());
speakerPanel.add(new JLabel("Speaker:"),
BorderLayout.NORTH);

speakerField = new JTextArea(10, 25);
speakerPanel.add(speakerField,
BorderLayout.CENTER);

31 32

9

33

• Ch5/code/mailgui/Telephone.java.html

34

Custom Layouts

• Form layout
• Odd-numbered components right aligned
• Even-numbered components left aligned
• Implement LayoutManager interface type

35

LayoutManager Interface
public interface LayoutManager
{

void layoutContainer(Container parent);
Dimension minimumLayoutSize(Container parent);
Dimension preferredLayoutSize(Container parent);
void addLayoutComponent(String name, Component
comp);
void removeLayoutComponent(Component comp);

}

36

Form Layout

• Ch5/layout/FormLayout.java
• Ch5/layout/FormLayoutTester.java
• Note: Can use GridBagLayout to achieve

the same effect

10

37

Plan

• Pluggable strategy for layout management
• Layout manager object responsible for

executing concrete strategy
• Generalizes to Strategy Design Pattern
• Other manifestation: Comparators

Comparator<Country> comp = new CountryComparatorByName();

Collections.sort(countries, comp);

38

Objective

1. A class can benefit from different
variants for an algorithm

2. Clients sometimes want to replace
standard algorithms with custom
versions

39

Solution

• Define an interface type that is an
abstraction for the algorithm

• Actual strategy classes realize this
interface type.

• Clients can supply strategy objects
• Whenever the algorithm needs to be

executed, the context class calls the
appropriate methods of the strategy object

40

In short

• PLUG AND PRAY

11

41

Next Time

• Do Reading (through 5.8)

• Review midterm to make sure you
understand what went wrong.

