
1

CS1007: Object Oriented Design 
and Programming in Java

Lecture #10
Oct 11

Shlomo Hershkop
shlomo@cs.columbia.edu

Announcements

• Midterm 10/20
– More later

• No class this Thursday
– Day off to study for midterm

• Next Tuesday
– LAB: please meet in Clic lab



2

Reading

• Chapter 1-4

Fundamentals again 

• Inheritance
• Polymorphism
• Functional inheritance
• Encapsulation



3

Inheritance

• Is the process of extending a class to do 
something specific
– Specializing a more general class
– Extend usefulness of a specific class
– Torture students as a teaching aid

Example

• BufferedReader class in java
– Can read a single char
– Can read a String
– Can read n characters into a buffer

• Want to extend to allow us to read an 
Integer.



4

public class newBR extends BufferedReader
{

public Integer readInt() throws…..

}
• Base class = super class = BufferedReader
• Derived class = subclass = newBR

• Can add variables, methods and will have all resources 
of super class

Redefining methods

• In subclass, can redefine methods
– Called polymorphism
– May not change simple return type

• Exception derived returned types
• New to java 5

– Can not change final methods in parents 
class

– Can make parent private methods, public 
(less restrictive only)



5

Overriding vs overloading

• Overriding:
– When redefine method with exact arguments 

and return type in subclass
• Overloading:

– Adding a method with the same name but 
new number of arguments

– Result in 2 methods available in the subclass

Access rules

• Private variable in the base class are not 
accessible in the derived class.

• So how do we manipulate them?



6

Encapsulation

• protected modifier:
– Allows access to variable/method only in 

same, derived and package classes.

– Weak protection compared to public/private 
modifiers

Iterators

• Iterator is an object which allows you to 
step through (and maybe modify) a 
collection of objects in some order.

• Simplest example:
– Step through an array with a counter



7

Iterator<T> interface

• standard Iterator interface type
public interface 
Iterator<LineItem>

{
boolean hasNext();
LineItem next();
void remove();

}

Danger 

• Should next() return
– Value
– Reference



8

Back to chapter 5

• We would like to create an animation 
sequence with an OO approach.

Defining a New Interface Type
• Use timer to move car shapes
• Draw car with CarShape
• Two responsibilities:

– Draw shape
– Move shape

• Define new interface type MoveableShape



9

CRC

• Name the methods to conform to standard library
public interface MoveableShape
{

void draw(Graphics2D g2);
void translate(int dx, int dy);

}
• CarShape class implements MoveableShape
public class CarShape implements MoveableShape
{

public void translate(int dx, int dy)
{ x += dx; y += dy; }
. . .

}



10

Implementing an Animation

• Label contains icon that draws shape
• Timer action moves shape, calls repaint 

on label
• Label needs Icon, we have 
MoveableShape

• Supply ShapeIcon adapter class
• ShapeIcon.paintIcon calls 
MoveableShape.draw

code

• Ch4/animation/MoveableShape.java
• Ch4/animation/ShapeIcon.java
• Ch4/animation/AnimationTester.java
• Ch4/animation/CarShape.java



11

Layout Managers

• User interfaces made up of components
• Components placed in containers
• Container needs to arrange components
• Swing doesn't use hard-coded pixel coordinates
• Advantages:

– Can switch "look and feel"
– Can internationalize strings

• Layout manager controls arrangement



12

Layout Managers
• FlowLayout:

– left to right, start new row when full
• BoxLayout: 

– left to right or top to bottom
• BorderLayout: 

– 5 areas, Center, North, South, East, West
• GridLayout: 

– grid, all components have same size
• GridBagLayout: 

– complex, like HTML table



13

Next

• Study for midterm
– Open book
– Closed computers

• Check online for sample questions and 
outlines
– Definitions
– Programming question
– Theory questions


