CS1007: Object Oriented Design
and Programming in Java

Lecture #1

Shlomo Hershkop
shlomo@cs.columbia.edu

Welcome

» Today:
— Basic overview of the course and objectives
» Goal:

— Thing are much easier if everyone knows why they
are here, and what we are trying to accomplish.

— I'will not stand here an lecture (although there will be
some of that). This is going to be a very interactive
course.

— We will learn about programming ideas while trying to
have fun.

— | hope to impart an impression of why | choose to
study CS and some of the options available to you.

What?

CS1007: Second course for CS majors.
Prerequisites:

— Basic knowledge in Java Programming
NOTE: JAVA is only a tool!!

Object Oriented Programming:

— What, why, how, and when.

Program Designs.

— Not enough to know how to write the program,
need to know how to do it correctly.

Example:

e Task:
— Create a program to run a chess game set.

— Any Ideas on how to design the programming
backend?

— ldeas on how to measure requirements.
— What is missing?

CS1004 vs CS1007

e CS1004 is an Introduction for those with no
formal CS/Java training

— Assumes only basic computer skills (email, web,
mouse, brain)

— Focuses on basic theoretical knowledge as well as
basic Java fluency
* CS1007 assumes basic Java knowledge

— If you don’t know Java and/or didn’t take the AP CS
exam, you're in the wrong room.

— Emphasis on more advanced Java and algorithmic
skills.

* If you have questions, ask me after class

Basics

Instructor: Professor Shlomo Hershkop
— (shlomo@cs.columbia.edu)

— 646 775 6041

— 460 CSB

Class website:
— cs.columbia.edu/~sh553/teaching/1007f05/

— Check it regularly (at least twice a week).
» See announcement sections for update info.

Two lectures a week.
See website for office hours

Resources

e TA's:
— Edward Ishak
— Amrita Rajagopal

* Class Webboard:

— Excellent place to post GENERAL questions, and
solutions.
» Good: How do | check what version of java is running?

» Bad: What is wrong with my code:
public class foo()

Requirements

* Interest to learn about OOP

» Textbook:

— Cay S. Horstmann
OO Design & Patterns, 2nd ed.
ISBN 0-471-74487-5

— Textbook can be acquired online or at the
Columbia Bookstore.

Why this textbook

Light
Well written

Covers the subject well
— Good mix of theory and practice

Interesting Examples

Course Structure

* 6 Homeworks — 150 points (50% of grade)
— Will have about 2 weeks per homework
» Midterm (50 points), Final (100 points)
— open book
 Homework is very important:
— Firm believer in hands on learning
— Start early

— Come to office hours, and ask questions
* We are here for YOU!

10

Homework Assignments

Written Sections:

— Will be collected at first class after HW deadline.
Programming:

— Online submission

— Must be able to run on cunix system (this is important).
Late policy:

— You have 3 late days that can be used during the semester.
— Late day is exactly 24 hours.

— After your late day deadline passes, the homework will not be
accepted.

Extra Credit:

— To allow for some maneuvering room, there will be extra credit
assignments during the semester.

11

Class participation and Attendance

» Attendance and participation is expected
— Very interactive lectures
— | hope to learn everyone’s name by midterm
— Useful for your grade
— Anonymous feedback system
* If you have to miss class, | expect you to catch
up.
— There will be some type of class notes posted to the
website

— Plan on lab components

— There will be many examples in class on the board,
so make sure to get someone’s notes.

12

Cheating Policy

eDON't

13

Cheating Policy

» Plagiarism and cheating:
— I'm all against it. It is unacceptable.

* You're expected to do homeworks by yourself

— This is a learning experience.

— You will only cheat yourself.

— My job is to help you learn, not catch you cheating, but....
» Automated tools to catch plagiarizers

— http://www.cs.berkeley.edu/~aiken/moss.html

— Moving stuff around, renaming, etc. doesn'’t help
 Results: instant zero on assignment, referral to academic

committee

— Columbia takes dishonesty very seriously

— I'd much rather you come to me or the TAs for help

14

Feedback System

» Last minute of class will be set aside for
feedback:

— Please bring some sort of scrap paper to
class to provide feedback.

— Feel free to leave it anonymous.

— Content: Questions, comments, ideas,
random thoughts.

* | will address any relevant comments at
the beginning of each class.

15

Shopping List

Make sure you have an extended CUNIX
account.

— Try to log into the account

Check out the class page

Obtain a textbook

See Homework 0 on class page

— General overview of cunix system and how to
use it.

16

Java Language

» A programming language specifies the words
and symbols that we can use to write a program

* A programming language employs a set of rules
that dictate how the words and symbols can be
put together to form valid program statements

* The Java programming language was created
by Sun Microsystems, Inc. and introduced in
1995.

17

Language Levels

* There are four programming language levels:
— machine language
— assembly language
— high-level language
— fourth-generation language

» Each type of CPU has its own specific machine
language

» The other levels were created to make it easier
for a human being to read and write programs

18

Programming Languages

» Each type of CPU executes only a particular

machine language

» A program must be translated into machine
language before it can be executed

» A compiler is a software tool which translates

source code into a specific target language

« Often, that target language is the machine
language for a particular CPU type

» The Java approach is somewhat different

Java Translation
The Java compiler translates Java source code into a
special representation called bytecode

Java bytecode is not the machine language for any
traditional CPU

Another software tool, called an interpreter, translates
bytecode into machine language and executes it

Therefore the Java compiler is not tied to any particular
machine

Java is considered to be architecture-neutral

10

Java Translation

Java source
code Java
bytecode

Java
Bytecode Bytecode
interpreter compiler

compiler
Machine
code

21

Topics to be covered

Review of Java basics, Introduction to object oriented programming,
Writing classes in Java.

Extended Java coverage: Exception handing. Event Handling.
Applets. GUIs. Java I/O

Object Oriented concepts: Abstraction, Polymorphism, Inheritance
Problem solving, program design, and common Design Patterns
Algorithms and Algorithm Analysis: Searching and Sorting
Introduction to data structures: Queues, Binary trees, etc.
Problem solving with Recursion

Advanced topics: multi-threading, concurrency, network
programming.

22

11

Something to think about:

How do you swap two integers without
using any extra memory?

23

Next class:

Cunix overview

Review of Java basics.

Simple Exception handling.

Writing classes in Java.

Object Oriented Design Process (intro).

24

12

o

PoONPE

Poll

To better tailor the class content:

Class: CC, GEAS...

Year:

Computer background

Familiar with unix/linux/windows command
prompt?

Why are you taking this course, and what are
you planning on doing long term.

Will you be mostly using your own computer or
lab?

25

13

