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ABSTRACT 
Machine learning and data mining can be effectively used to 
model, classify and discover interesting information for a wide 
variety of data including email. The Email Mining Toolkit, EMT, 
has been designed to provide a wide range of analyses for 
arbitrary email sources. Depending upon the task, one can usually 
achieve very high accuracy, but with some amount of false 
positive tradeoff. Generally false positives are prohibitively 
expensive in the real world. In the case of spam detection, for 
example, even if one email is misclassified, this may be 
unacceptable if it is a very important email.  Much work has been 
done to improve specific algorithms for the task of detecting 
unwanted messages, but less work has been report on leveraging 
multiple algorithms and correlating models in this particular 
domain of email analysis.    

EMT has been updated with new correlation functions allowing 
the analyst to integrate a number of EMT’s user behavior models 
available in the core technology. We present results of combining 
classifier outputs for improving both accuracy and reducing false 
positives for the problem of spam detection. We apply these 
methods to a very large email data set and show results of 
different combination methods on these corpora. We introduce a 
new method to compare multiple and combined classifiers, and 
show how it differs from past work. The method analyzes the 
relative gain and maximum possible accuracy that can be achieved 
for certain combinations of classifiers to automatically choose the 
best combination.    

Categories & Subject Descriptors:  
H.3.3 [Information Search and Retrieval]: Retrieval models, 
Selection process. H.4.3 [Communications Applications]: 
Electronic mail. I.5.3 [Clustering]: Similarity measures. I.6.4 
[Model Validation and Analysis].  

General Terms:  
Algorithms, Performance. 

Keywords: 
 Data Mining, Email Mining, Spam, Multiple Classifiers, Model 
Combination, Aggregators, False Positive Reduction. 

 

1. INTRODUCTION 
Email is undoubtedly the internet’s killer application. Email is as 
entrenched in modern life as telephony, and offers new 
opportunities for various analytical tasks. An organization or 
user’s email communication can be leveraged for many different 
applications in commerce, security and in managing resources in 
networks. In our previous work on the Email Mining Toolkit, 
EMT, we describe a number of these and how one may extract a 
wide variety of information and models of user and organizational 

 behavior for various purposes, including virus detection. 
However, email can also be abused. By way of example, in this 
paper, we focus on the problem of Spam detection. Spam has been 
the subject of much debate, as well as a considerable amount of 
research and technology development to detect and eliminate it.  

Current estimates indicate that over sixty percent of email traffic 
is regarded as spam and there is little reason to expect this 
continuous deluge will subside. Recent anti-spam laws and 
proposed email protocol changes aiming to restrict how and who 
can send emails has only had the effect of changing the way 
Spammers send their messages but have not decreased the amount 
of Spam.  

In much of the research on Spam conducted to date, the research 
community has focused on defining a universal definition of 
Spam, and general-purpose methods to detect such emails. The 
fact remains that although 99% of user’s may agree that certain 
emails are indeed Spam, the remaining 1% may actually wish to 
receive such emails. Put another way, the true positives of a spam 
filter for one user may actually be false positives for a different 
user, and vice a versa.  

In our work, we define spam as emails unwanted by the user, not 
necessarily email deemed by a third party as unwanted. The dual 
is also true. Email received by some users may not be regarded by 
a third party as Spam, yet those emails may still be unwanted by 
the users in question. Our research is thus focused on learning 
which email a user may actually want to receive and which they 
do not, rather than depending entirely upon a third party arbiter to 
decide that central question on behalf of all users. 

EMT was designed to analyze email corpora, including the entire 
set of email sent and received by an individual user, and to model 
the user’s email behavior in order to classify that email for a 
variety of tasks, including in this case Spam detection. For 
example, EMT can be used to compute models under the guidance 
of a user to detect and classifying email into any categorization 
they desire. Hence, ordinary users may automatically organize and 
manage their own email archive, a criminal investigator may study 
a large corpus of email evidence more efficiently, and a network 
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administrator may more readily determine the entry point of a new 
virus attack and the email clients poised for infection.      

Recently, supervised machine learned methods have been heavily 
studied and reported in the literature to improve the accuracy of 
Spam filters. The prior generation of rule-based Spam filters have 
failed for many reasons not least of which is the error prone 
methods of string matching algorithms [7, 18, 31]. A great deal of 
the published work follows the same paradigm of training a Spam 
classifier given examples of Spam emails. For example, Naïve 
Bayes models to detect Spam was first introduced by [36] with a 
Bernoulli word vector model. SVM-based spam detection models 
[21, 24] and boosting spam models [5] were compared in [10] and 
genetic algorithms  versus Naïve Bayes were introduced and 
evaluated in [20]. Text distance models [39, 40] and pattern 
extraction versus Naïve Bayes were compared in  [33]. Further 
work has been done using cost-sensitive based learning  [1, 2, 17], 
extensions to Naïve Bayes bag-of-words modeling [30, 34] and a 
comparative evaluations of different Naïve Bayes models [38]. An 
excellent overview of these methods and techniques is provided 
by [13, 28]. Recently even DNA pattern analysis [35] have also 
made it to the spam classification domain. To be sure, machine 
learning applied to Spam detection has received intense study 
over the last few years.  

In this work, we evaluate methods that combine a variety of 
different models to determine whether we can more accurately 
identify what is truly Spam to a particular user, with the goal of 
substantially reducing the number of false positives over any 
individual classifier. Combining multiple classifiers to increase 
performance is not new. However, methods that combine and 
correlate multiple classifiers have not been adequately explored in 
the Spam detection domain. In addition, we propose a new model 
combination method that correlates a considerably diverse set of 
user email behavior models; i.e. not only email content models are 
used to advantage, but also user behavior models as well which do 
not rely upon the content of emails.  

The rest of the paper is organized as follows. We first describe 
related work in combining multiple models in the specific case of 
spam detection. We then describe EMT and the individual 
machine learning models embedded in EMT, and methods for 
combining these classifiers. We then present a metric that 
estimates the performance of a classifier. This metric guides the 
means of combining multiple classifiers to produce an improved 
correlated system of classifiers with better overall performance 
than any of the component classifiers. We then detail the data sets 
and the performance results testing these ideas, comparing  
individual classifiers to the performance achieved under different 
classifier combinations. The paper concludes with a discussion of 
several open problems and future work.  

2. Related Work 
A considerable amount of literature exists concerning various 
methods for combining multiple classifiers. Combining and 
correlating models has been used in speech recognition, statistical 
pattern recognition, fraud detection, document classification, 
handwriting analysis and other fields. Various approaches 
combine models using different feature sets, other works correlate 
model outputs. An overview of the topic appears in [6, 22, 23]. 
Numerous studies have shown that combining classifiers yields 
better results than achievable with an individual classifier [9, 25]. 

Some propose combining very strong classifiers (i.e. with low 
error rates) [32, 43] assuming that weak classifiers (high false 
positives) will not combine as well, or will require too many 
rounds of training to achieve low error rates. Measuring the 
“competence” of each classifier before combining them is a 
common approach as in [3]. 

In [37] a combination of spam classifiers is proposed. That work 
was limited to training a committee of classifiers on a subset of 
labeled data, and then training a ‘president’ classifier using the 
labeled data plus the outputs from the sub-classifiers.  

The method we report combines the output of individual 
classifiers each of which outputs a confidence score associated 
with the output class label. The individual classifiers  are 
computed by distinct machine learning algorithms some of which 
are trained on independent features extracted from email. We 
detail the collection of supervised machine learning algorithm 
built into EMT in the following sections. 

Some of the earlier work assumes a combination of classifiers 
with binary output (good/bad) and [9] points out that only when 
the classifiers have uncorrelated errors can we improve their 
overall assessment. We show later why the combination of 
confidence factors is able to achieve better results than a 
combination of binary classifiers. 

3. An Overview of EMT 
The Email Mining Toolkit developed at Columbia University has 
been reported elsewhere [15, 16, 41, 42]. EMT contains behavior 
modeling features revealing much information about individual 
users as well as the behavior of groups of users in an organization, 
and the behavior of file attachments in an email archive. A 
number of machine learning and anomaly detection algorithms are 
embedded in the system, with a convenient interface allowing a 
user to select a variety of features extractable from email. We 
summarize some of these features. 

Stationary User Profiles - Histograms are used to model the 
behavior of a user’s email account over time. Histograms are 
compared to find similar behavior or abnormal behavior within 
the same account (between a long-term profile histogram, and a 
recent, short-term histogram), and between different accounts. 

Attachment Statistics - EMT runs an analysis on each attachment 
in the database to calculate a number of metrics. These include 
birth rate, lifespan, incident rate, prevalence, threat, spread, and 
death rate. They are explained fully in [4] and are used to detect 
unusual attachment communication indicating security breaches 
or virus propagations.   

Similar Users - User accounts that may behave similarly may be 
identified by computing the pair-wise distances of their 
histograms (e.g., a set of Spam accounts may be inferred given a 
known or suspect Spam account as a model). Intuitively, most 
users will have a pattern of use over time, which spamming 
accounts will likely not follow. (Spam bots don’t sleep or eat and 
hence may operate at times that are highly unusual.) 

Group Communication (Cliques) – Communication graph-based 
analyses identify clusters or groups of related email accounts that 
frequently communicate with each other. This information is used 
to identify unusual email behavior that violates typical group 
behavior. For example, intuitively it is doubtful that a user will 
send the same email message across all of his social groups. A 
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virus attacking his address book would surely not know the social 
relationships and the typical communication pattern of the victim, 
and hence would violate the user’s group behavior profile if it 
propagated itself in violation of the user’s “social cliques”. 

Clique violations may also indicate internal email security policy 
violations. For example, members of the legal department of a 
company might be expected to exchange many Word attachments 
containing patent applications. It would be highly unusual if 
members of the marketing department, and HR services would 
likewise receive these attachments. EMT can infer the 
composition of related groups by analyzing normal email flows 
and computing cliques, and use the learned cliques to alert when 
emails violate clique behavior. 

Recipient Frequency - Another type of modeling considers the 
changing conditions of an email account over sequences of email 
transmissions. Most email accounts follow certain trends, which 
can be modeled by some underlying distribution. As an example 
of what this means, many people will typically email a few 
addresses very frequently, while emailing many others 
infrequently. Day to day interaction with a limited number of 
peers usually results in some predefined groups of emails being 
sent. Other contacts communicated to on less than a daily basis 
have a more infrequent email exchange behavior. These patterns 
can be learned through the analysis of a user’s email archive over 
a bulk set of sequential emails.  

Every user of an email system develops a unique pattern of email 
emission to a specific list of recipients, each having their own 
frequency. Modeling every user's idiosyncrasies enables the EMT 
system to detect malicious or anomalous activity in the account. 
This is similar to what happens in credit card fraud detection, 
where current behavior violates some past behavior patterns. 

VIP Users - The recipient frequency analysis identifies the 
relative importance of various email users. By extending the 
analysis to compute the “response rates” to a user’s typical 
recipients, one can learn the relative rank ordering of various 
people. Those, to whom a user responds immediately to, are likely 
important people in the organization.  

Besides this rich collection of email user behavior, which do not 
rely upon any content-based analyses, EMT also provides the 
means of statistically modeling the content of email flows. Several 
of these are described in the next section.    

4. Supervised Machine Learning Algorithms 
For this study we apply EMT’s machine learning models in the 
toolkit to study various means of correlating models. Specifically 
we used a Naïve Bayes classifier algorithm applied to “non-
content” features, an N-Gram cosine model applied to the body of 
emails, a text classifier also applied to the body that is an 
adaptation of  Naïve Bayes word Tokens, a standard TF-IDF 
model common in Information Retrieval application, a specialized 
“Limited N-Gram” analysis, and a specialized “URL link” model. 
These individual classifiers are used as a basis for the combination 
classifiers evaluated in our studies. Each is a machine learning 
algorithm used in supervised training to emit a class label and a 
confidence score. An EMT user has the means of specifying 
arbitrary class labels, and choosing from a rich set of available 
features that are extracted from an email archive.   

We next provide an overview of each of the component 
supervised machine learning algorithms built into EMT and used 
in this study.  

4.1 Non-Content Naïve Bayes Classifier 
(NBAYES) 
Traditional machine learning modeling of email has been based 
on the textual content of email messages. Typically tokens are 
extracted from the email body and sometimes header data then 
processed by some machine learning algorithm. 

In our prior work, we have proposed and demonstrated how non-
content features can be used to profile and separate virus and 
Spam from normal emails [15]. The non-content features are 
specific static features extracted from the email envelope which 
are not part of the actual message body. 

One of the most studied machine learning algorithms for the task 
of spam detection has been applying Bayesian classification to 
modeling the content of email. 

Bayes classifiers are based on early works by [11] in the field of 
pattern recognition. Given an unlabeled example, the classifier 
will calculate the most likely classification with some degree of 
probability. Bayes theorem is a way of calculating the posterior 
probability based on prior probability knowledge. 

A Naïve Bayes classifier computes the likelihood that an email is 
one or another class label given a set of features extracted from 
the training emails. The classifier is known as naive because it 
makes a naive assumption that the tokens a statistically 
independent. In other words, the probability of observing the 
combination of a specific set of features is simply the product of 
the probabilities. Although this is an over simplification, it greatly 
reduces the computational costs of estimating the conditional 
probabilities and in practice as been found to work as well as 
neural networks and decision trees. 

In this classifier the set of features extracted is a set of static 
features including sender and recipient email names, domain 
names, and zones (domain ending such as com, edu, etc). In 
addition, the size of the message, number of recipients, number of 
attachments, and the MIME-type of the email are used. For 
continuous value features we use a multiple Gaussian estimate to 
estimate a probability value as in [19]. More detailed information 
about our classifier can be found in [15]. 

4.2 N-Gram Classifier  
When analyzing text, one alternative to using words as tokens is 
to take subsequences of the data and use these subsequences as 
tokens. The advantage is that we do not need to define what the 
notion of a word is for us to analyze the text. This is ideal for 
example where some foreign languages which use characters 
instead of words.   

An N-gram represents the sequence of N adjacent characters or 
tokens that appear in a document. We pass an N-character (or N-
word) wide window through the entire email body, one character 
(or word) at a time, and count the number of occurrences of each 
distinct N-gram.  For example for a 5-gram, the sequence `̀Hello 
world'' would be mapped to tokens: `̀Hello'', `̀ello `̀, `̀llo w'', 
`̀lo wo'', etc. 

For email modeling, the algorithm works as follows. We count the 
number of occurrences of each n-gram for each email; this may be 
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viewed as a document vector. Given a set of training emails, we 
use the arithmetic average of the document vectors as the centroid 
for that set. For an unknown test email, we compute the cosine 
distance [8] against the centroid created for the training set. If the 
cosine distance is 1, then the two documents are deemed identical. 
The smaller the value of the cosine distance, the more different 
the two documents are. Cosine distance is defined as: 
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Here J is the total number of possible N-grams appearing in the 
training set and the test email. x is the document vector for a test 

email, and y is the centroid for the training set. jx  represents 

the frequency of the jth n-gram (the N-grams can be sorted 
uniquely) occurring in the test email. Similarly ky  represents the 

frequency of the kth N-gram of the centroid.  

4.3 Text Classifier 
This classifier is a Bayes classifier based on simple word or token 
frequency as described in [29]. We calculate the probability of 
each token as seen during training using Bayes formula and assign 
a confidence score of the predicted class.  

�
�
�

∏
∏

=
)|()(

)|()(
max,

NotSpamwordPNotSpamP

SpamwordPSpamP
scoreclass

i

i

 

4.4 Content-based Naïve Bayes (PGRAM) 
Recent work by Graham [12] on the task of spam detection has 
floated the idea of a partial Naive Bayes approach, biased towards 
low false positive rates. It also uses word tokens, but filters out 
predefined common tokens. We incorporate this classifier in order 
to compare content based analysis (only over content) to our other 
models. 

4.5 TF-IDF Classifier 
This algorithm is the standard term frequency (TF) document 
frequency (IDF) model commonly used in Information Retrieval 
applications. The words that appear more frequently in a user’s 
email likely will be key to accurate classification of emails rather 
than words which appear infrequently. This feature of EMT is 
based upon the work reported in [39, 40]. 

4.6 Limited N-Gram 
This classifier is influenced by the work reported in [27] on 
finding matching files in a large file system. We adapted that work 
to limit the N-grams to a subset of the possible N-grams for 
dramatic reduction in computational expense. We calculate an 
integer hash value for each subsequence, and only store those 
which mod to some primary number. This has the effect of 
ignoring over 60% of the subsequences. 10-grams are modeled in 
the experiments reported below.  

4.7 URL Modeler 
Another type of behavior within email is the behavior of a typical 
link within an email message.  The URL model allows us to 
profile a typical URL link found in a user's email. By modeling 
the typical URL link we can differentiate between wanted and 

unwanted email links. The algorithm was developed to compute 
distances between groups of universal resource locators (URLs) 
found in sets of emails. For the spam detection domain, non-spam 
messages will typically contain embedded URLs that are likely to 
be similar to each other and different than those occurring in 
Spam messages. We define a distance metric between 2 URLs 

yx,  given the following formula: 
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where xURL is the longer URL. The distance is returned as a 

number between 0-200 where the smaller the number the closer 
the two URLs are to each other. We have also defined 12 types of 
URL’s, for example URLs can be found as image links, or ftp 
links, or more common http links. These different types of URL 
links are also taken into account in the final score. 

For each individual email, we group the URLs into a single 
cluster. While training, the clusters are formed in the following 
manner. All URLs are extracted from a new training example to 
form a single cluster. We then evaluate this cluster against all our 
current clusters to see if the average difference is under some 
threshold, if it is, we merge the two clusters. If it is not, we create 
a new cluster with the current set. 

During testing, we simply extract all the URLs as a cluster, and 
find the minimum distance to any cluster in any class. This is 
similar to a K-nearest neighbor algorithm. This distance is then 
converted into a confidence score and outputted as a predicted 
score. For more details please refer to [14]. The end result is a 
measure of how unusual or familiar a URL may be in an email 
message given the user’s prior history of emails with embedded 
URL’s.  

5. Combining Classifiers 
The goal of Model combination is to leverage multiple learned 
experts over a given task to improve individual model 
performance. We may be interested in reducing errors, improving 
accuracy, or a combination of the two. In addition, by including 
the input of many types of classifiers we can protect ourselves 
from risk of any one classifier being compromised.  

Many different studies have shown that combination classifiers 
either over raw features or over classifier outputs are better than 
any single individual classifier in the group. We now present an 
overview of some combination algorithms and specifically 
illustrate them with examples in the Spam detection domain. 

In this study, to detect Spam email, we define a two-class 
problem, “normal” and “spam”.  The outputs of each of the 
classifiers is a class label and a confidence value in the range 
[0…100]. However, these outputs are coerced to a single value in 
the range [0…201] by a simple mapping technique to simplify the 
computation of correlated classifier outputs. We subtract from 100 
all scores output by a classifier with label “normal” (resulting in a 
0-100 range) and add 101 to any output score labeled “spam” 
(producing the range 101-201). Hence, the confidence interval is 
measured on a scale from 0 to 201 with 0 regarded as “highly 
normal” and 201 representing high likelihood a message is 
“spam”. Thus, we may treat the two-value classifier output  (class 
label and confidence) as a single number simplifying how we 
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compute a correlation function. We refer to these outputs as raw 
scores, which are combined by a number of correlation functions.    

The training regime requires some explanation. A set of emails are 
first marked and labeled by the user indicating whether they are 
Spam, or normal. This information can also be gleaned by 
observing user behavior (whether they delete a message prior to 
opening it, or move it to a “garbage/spam” folder). For our 
purposes here, user’s provided their email files with those 
considered Spam placed in a special folder. Those were labeled as 
Spam, while all others were labeled as normal.  

Once the component classifiers are applied to this labeled email 
corpora, the set of model outputs (the classifier raw scores 
mapped to the range [0…201]) are combined by a correlation 
function. Some of these correlation functions require a training 
phase. The component classifiers are tested against their training 
data and these model outputs are used to train the correlation 
function. Several were implemented and tested. We define each 
correlation function as follows.  

5.1 Simple Averaging (Equal Weights) 
As a baseline combination scheme, scores are simply averaged. 
This correlation function requires no training data, as it computes 
a final combined model output from the raw scores produced by 
each component classifier.  

5.2 Learned Weights - Weighted Majority  
The weighted majority function is an adaptation from [26]. Each 
of the individual classifiers is initially assigned an equal weight 
vote.   

During training, a threshold is chosen for binary classification 
(correct or not) and a tally of scores is computed with the majority 
vote as the predicted classification. If the majority of the 
classifiers are correct no weights are updated. If it is incorrect, the 
algorithm deducts a cost � from each of the classifiers which 
contributed to the incorrect vote. Modeled after the work in [26]  
we added a term � to each weight of the correctly voting 
classifiers. Unlike the original algorithm, we reward classifiers 
which had a correct vote when the overall majority were incorrect.  

During testing of an email, if the majority of weights are more 
confident that the example is Spam, we return the maximum 
available raw score produced by one of the component classifiers. 
Conversely, if the weights are more confident that the example is 
normal, we return the minimum available score. 

5.3 Naïve Bayes Combination 
In the Naive Bayes Combination algorithm we attempt to estimate 
the likelihood of an individual classifier being correct for a given 
score.  

We can estimate this by studying a classifier's performance over a 
training sample.  Since ground truth is known, we can measure the 
error rate of the classifier and its likelihood of being correct.  This 
probability is estimated by mapping the scores computed for the 
training data of the classifier to pre-defined bins over the range of 
the raw scores. We use bins to allow us to cluster scores to 
achieve a high statistical sampling and reduce the amount of 
computation. 

The number of bins, n , is a parameter. For each bin (score 
range), we count the number of true spam and number of true 

normal samples, while keeping a total count of each class label 
seen in the training set. Then, we estimate: 
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for the particular bin (note the smoothing terms in the formula). 

iC is the ith classifier we are combining. The ( )NotSpamCP i  

is calculated in a similar manner. The final score is returned in the 
range [0-201] by normalizing the estimated likelihood, P(S), that 
the sample S is Spam. The normalization is computed as follows: 
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5.4 N Dimensional Naïve Bayes Sampling 
The N dimension Bayes algorithm attempts to closely model the 
probabilities of the combination of returned scores. We do not 
assume statistical Independence among the classifiers, and thus 
sample the training examples using an nn × matrix. Intuitively, 
we expect that if one of the classifiers return a high probability of 
Spam, and one doesn't, we can correct this particular combination 
by seeing what the real label was during training and learning the 
probabilities. In addition because we do not have classifier 
independence we require a small number of bins or much more 
data to train upon. 

For example if we set the bins to size 50 the range [0…201] will 
map to 5 bins (0-49,50-99,100-149,150-199,200+). If we have 2 
classifiers to combine, we compute a single 5X5 matrix. If we see 
a score of 40 from the first classifier, and 30 from the second, this 
will map to location (0,0). The probability can be calculated 
during testing by simply extracting values from the matrix seen 
during training in the following manner: 
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NUMBERBINSNotSpamS
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SScore
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ij
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where ijS is the number of Spam observed and recorded in the  

matrix location (i,j). We use a Laplace smoothing factor of 

NUMBERBINS
1 , where NUMBERINS is the total number of bins 

(n2) we have chosen. 

6. Measuring Gains from Model Correlation 
There are several ways to measure the performance of the 
classifier combination. Zheng et al [43] proposes a novel way 
based on the Data Envelope Analysis (DEA) method. This 
analysis produces a measurement of how accurate each classifier 
is in correctly classifying examples. This is different than ROC 
convex hull measurements proposed by Provost and Fawcett in 
[32]. 

Both methods make some strong assumptions about the 
performance of the underlying classifiers. For example they 
concentrate on combining the best classifiers, trying to measure 
what best means. We show how even weak classifiers can be 
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combined in our context of computing a model correlation 
function. 

We also propose a new way to measure the gain in the context of 
this two class problem, i.e. Spam classifiers. If we were to 
calculate the maximum gain from any classifier we could measure 
a relative gain in comparison with this maximum. We call this 
empirically measured maximum possible gain the Judge 
Combination. 

6.1 Judge Combination 
We would like to estimate the theoretical maximum classification 
score available through combining raw scores. We start with a 
simple question, how accurate is a combination of classifiers if we 
only combine the minimum or maximum available raw scores 
from the component classifiers in the correlation function 
(essentially ignoring lower scores otherwise)? 

Surprisingly, the answer is very accurate! We call the following 
algorithm the Judge Combination. Given that we know the correct 
classification of an email used to train the classifiers, we return 
the maximum available score if it is Spam and minimum if it is 
not Spam.  

The accuracy achieved by this combination method, is used as the 
theoretical limit of a possible combination algorithm and we scale 
all our gain results based on this accuracy estimate.  

6.2 Gain formula 
We define the gain as a convenient measurement of how much of 
its accuracy potential a classifier has reached. This measurement 
can be used to decide which combination algorithm to use in a 
system.  

i
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where FPi is the measured false positive rate of the classifier over 
its training data. i is varied by 10,000 to allow two decimal 
precision for measuring the false positive rates from 0 to 100. This 
is simply the area under the ROC curve, biased towards lower 
false positive values. We can calculate the FPi by moving a 
threshold over the data and calculating a ROC curve, and then 
averaging the results between points to interpolate the graph. 

Since the Judge algorithm represents the maximum possible 
combination score achievable, we use it to scale the gain score for 
each individual classifier as follows: 

 

gainJudge
gainclassifier

gain
_

_=  

7. Experimental Setup 
A large data set of real email was used to study the model 
combination methods. The data set consists of emails collected 
from five users at Columbia University spanning from 1997 to the 
present, a user with a hotmail account, and a user with a 
Verizon.net email account. In total we collected 320,000 emails. 
Users indicated which emails where Spam by moving them to 
specific folders. These are emails unwanted by each user.  

Because current Spam levels on the internet are estimated at 60%, 
we sampled the set of emails so that we have a 60% ratio of Spam 
to normal. We were left with a corpus of 278,274 emails time 
ordered as received by each user. 

We tested the models using the familiar 80/20 rule, 80% being the 
ratio of training to testing. Hence, the first 80% of the ordered 
email are used to train the component classifiers and the 
correlation functions, while the following 20% serve as the test 
data used to plot our results. This set up mimics how such an 
automatic classification system would be used in practice. As time 
marches on, emails received are training data used to upgrade 
classifiers applied to new incoming data. Those new data would 
be used as training for another round of learning to update the 
classifiers. 

Table 1 Individual Classifier Performance 

Classifiers Detection False 
Positive 

Gain 

Ngram 75% 4% 72.2% 

URL 55% 10% 32% 

TextClassifier 91% 5% 71% 

Pgram 87% 2% 77.2% 

Limited Ngram 66% 5% 61.4% 

Nbayes(non 
content) 

88% 3.8% 79.8% 

TF-IDF 74% 4.2% 61.5% 

 

Ideally, since some of the correlation functions require training 
data, we would like to train the combination algorithm 
concurrently with the training of the individual classifiers. 
Although we could have first given each classifier all the training 
examples and then extracted scores over those examples, we felt 
that would not reflect the real world setting where only partial 
examples of Spam would ordinarily be  available, only those seen 
to date by the user. To this end, we batched the training data into 
1000 examples used to train the classifiers. After each batch, each 
classifier was executed to generate raw scores for each of the 
examples seen in the current batch. These scores were then input 
to the model combination algorithms to train the correlation 
function. We used a batch size of 1000 for efficiency purposes, 
although any size should be acceptable to achieve comparable 
results. We realize, however, that individual classifiers will shift 
individual scores depending upon the amount of training data 
used. For example, for some classifier, its scoring might be 
different if we train 5000 emails rather than say 1000. However, 
we preferred to mimic a more realistic training regimen reflecting 
how such a system may actually be used as a real application, and 
thus we believe this batch approach is not unreasonable.  

The data used was pristine and unaltered. No preprocessing was 
done to the bodies of the emails with the exception that all text 
was stropped to lower case. Headers of the emails were ignored 
except for subject lines that are used in some of the non-content 
based classifiers. While adding header data would have improved 
individual classification, there is much variability in what is seen 
in the header, and we felt it might over train and learn some subtle 
features of tokens only available in the header data present in the 
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Columbia data set. For the Ngram, TF-IDF, PGram, and Text 
Classifier, we truncated the email parts so that we only used the 
first 800 bytes of each part of the email attachment. This was used 
for both efficiency and computational considerations. In addition 
the increase in detection was about 10% over using full email 
bodies. The reason is because of noise in the number of tokens 
seen. 

 

 

Figure 1 - Results of Individual Classifiers 

 
Figure 2 - Results of Combination Algorithms 

8. Results 
Figure 1 shows the performance results of the individual 
classifiers over the email data set. Of particular interest is that the 
NBayes non-content, Text Classifier, and PGram classifiers are all 
very strong classifiers. Table 1 has the detection rates highlighted 
at certain points to give a sense of how well they compare to each 
other. 

Figure 2 shows the results of combining the classifiers. Table 2 
has the combination algorithms and the gains achieved in each 
case. Notice that false positives have been reduced by about 3% 
and detection improved by about 4% over the best individual 
classifiers.  This is also reflected in about a 15% improvement in 
the gain measurement. 

Table 2 - Highlight from combination algorithms 

Classifiers Detection False 
Positive 

Gain 

Equal Weights 87% 2.3% 84% 

Single 
Dimension NB 

93% 3.6% 85.1% 

Judge 
Combination 

99% 0.025% - 

N Dimension 88.7% 2.3% 84.5% 

Weighted 
Majority 

85.5% 2.5% 79.9% 

We next compare the merit of only combining strong or weak 
classifiers. In Figure 5 we combined the three strongest 
algorithms, namely non-content, text classifier, and pgram. Notice 
about a 2% false positive reduction is achieved over the strongest 
component classifier.  

 

Figure 3 - Combining Ngram and Ngram-Limited 
We compare the combination of Ngram, URL, Limited Ngram in 
Figure 6. Surprisingly the weighted majority and NB1 are almost 
the same here. Since TF-IDF on a full email body has a very low 
detection rate, we tried a combination of URL, TF-IDF(full), and 
Limited Ngram in Figure 7. Although there is a negligible 
improvement in false positive rate, there is a very strong detection 
improvement of about 10%. 

In Figure 3 we highlight what happens when combining two 
similar classifiers. Notice that the performance of the Judge 
algorithm has been significantly reduced, as expected. This 
confirms that the individual classification errors strongly overlap, 
thus the maximum combination is also lower. 
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Figure 4 - TFIDF performance 

The TF-IDF(full body) classifier was a surprisingly poor 
performer and thus represents a weak classifier combination. We 
show case what happens to the TF-IDF algorithm as it is exposed 
to less of the email parts. The improvements are going from full, 
to first 800, to first 400 bytes and compared to NBayes in figure 4. 
We also show the combination when we combine the best and 
worst classifiers in Figure 8. Notice that the Judge isn’t returning 
the theoretical limit and the reason is that TF-IDF doesn’t return a 
confidence score, but rather a distance metric to some document 
centroid. In addition because it is being trained on the entire body, 
the algorithm is being overwhelmed by noisy token probabilities.  

Because of this, the scores here are not easily combined by a 
simple combining scheme. On the other hand, the Naïve Bayes 
combinations are mapping the scores to a probability space, where 
there can be interpreted as a confidence value. This is also the 
reason that it has been found that combining confidence scores, 
works better than combining binary classification. There is 
inherently more information in such cases. 

 
Figure 5 - Combining 3 Strong Algorithms 

 
Figure 6 - Combining Weak Classifiers 

9. Conclusion 
We have investigated several particular model combination 
algorithms and plotted their performance using a number of 
supervised machine learning classifiers. We inspected several of 
the emails that were persistently misclassified by all the 
combinations. These peculiar emails comprised messages with 
only graphics attached, flaming debates on some news groups, 
and some empty emails that had no bodies (their message was 
essentially their subject line). We believe that much lower false 
positive rates can be achieved on this data set by including 
features extracted from the email header data. 

In summary we have shown how combination algorithms can be 
directly applied to Spam classifiers, and used to improve both 
false positive and detection rates on either strong, weak, or a 
combination of these classifiers. We rely on the gain formula to 
help choose a specific algorithm.  

 
Figure 7 - Combining Weak Classifiers 
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Figure 8 – Combining Non content Naïve Bayes and TF-
IDF(full body) 

A very strong reason to work with combination algorithm is 
something learned from the computer security domain: resistance 
to attack. Concentrating on only one single classifier, to fine tune 
it to perfection, will only encourage spammers to try to, and 
eventually defeat, that specific mechanism. By using a 
combination algorithm, an email enclave can be protected against 
compromise of any single Spam classifier. This is highlighted in 
Figure 8 where the scores of the TF-IDF (over full body) can be 
thought of being compromised in some fashion so that they do not 
reflect a true confidence. The combination algorithms which are 
based on remapping probabilities are remarkably resilient in face 
of this kind of attack. In reality, a simple equal weights algorithm 
can be used, and a second probability algorithm run along side as 
a reality check on the performance of the classifier. Having 
automatic checks and balances, is one way in which spam 
classification can gain user confidence by displaying a confidence 
metrics, without requiring the user to trudge through mounds of 
spam in the spam folder searching for misclassified examples. 

In future work, we would like to combine these classifiers with 
some of the open source Spam filters and perhaps to automatically 
update the Spam filters when EMT has developed sufficient 
evidence for a flood of new Spam. Even so, EMT is being 
developed as an integrated solution extending an ordinary email 
client program so that users can train a filter to make their own 
judgments about email Spam.  

The results achieved indicate that EMT is a fairly robust and 
accurate system providing a powerful tool for a variety of analysis 
tasks. These concepts are applicable to a far wider range of 
problems, including virus detection, security policy violations, 
and a host of other detection tasks. It is important to note that 
testing EMT in a laboratory environment only suggests what its 
performance may be on specific tasks and source material. The 
behavior models are naturally specific to a site or particular 
account(s) and thus performance will vary depending upon the 
quality of data available for modeling, and the parameter settings 
and thresholds employed.  Although the model combination 
functions work well in these test cases, there is still other 
analytical tasks that should be explored to determine how to fully 
automate a model combination and correlation function feature. In 
the case of the two-class Spam detection problem, the 

methodology is straightforward. This may not be the case for 
multi-class learning problems.  

Table 3 - Combining Strong Classifiers 

Classifiers Gain 

Text Classifier 73% 

PGram 80.1% 

Naïve Bayes Non content 82.8% 

Equal weight 84.6% 

NB 1 dimension 84% 

NB n Dimension 86.6% 

Weighted Majority 80.2% 

 

Table 4 - Weak Classifiers 

Classifier Gain 

Ngram 74.3% 

URL 32.0% 

Limited Ngram 63.25% 

Equal Weights 73% 

Naïve Bayes 1 74% 

NB n Dimension 65% 
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