
 1

Combining Email Models for False Positive Reduction
Shlomo Hershkop
Columbia University

500 W 120 St
New York, NY 10027

shlomo@cs.columbia.edu

Salvatore J. Stolfo
Columbia University

500 W 120 St
New York, NY 10027

sal@cs.columbia.edu

ABSTRACT
Machine learning and data mining can be effectively used to
model, classify and discover interesting information for a wide
variety of data including email. The Email Mining Toolkit, EMT,
has been designed to provide a wide range of analyses for
arbitrary email sources. Depending upon the task, one can usually
achieve very high accuracy, but with some amount of false
positive tradeoff. Generally false positives are prohibitively
expensive in the real world. In the case of spam detection, for
example, even if one email is misclassified, this may be
unacceptable if it is a very important email. Much work has been
done to improve specific algorithms for the task of detecting
unwanted messages, but less work has been report on leveraging
multiple algorithms and correlating models in this particular
domain of email analysis.

EMT has been updated with new correlation functions allowing
the analyst to integrate a number of EMT’s user behavior models
available in the core technology. We present results of combining
classifier outputs for improving both accuracy and reducing false
positives for the problem of spam detection. We apply these
methods to a very large email data set and show results of
different combination methods on these corpora. We introduce a
new method to compare multiple and combined classifiers, and
show how it differs from past work. The method analyzes the
relative gain and maximum possible accuracy that can be achieved
for certain combinations of classifiers to automatically choose the
best combination.

Categories & Subject Descriptors:
H.3.3 [Information Search and Retrieval]: Retrieval models,
Selection process. H.4.3 [Communications Applications]:
Electronic mail. I.5.3 [Clustering]: Similarity measures. I.6.4
[Model Validation and Analysis].

General Terms:
Algorithms, Performance.

Keywords:
 Data Mining, Email Mining, Spam, Multiple Classifiers, Model
Combination, Aggregators, False Positive Reduction.

1. INTRODUCTION
Email is undoubtedly the internet’s killer application. Email is as
entrenched in modern life as telephony, and offers new
opportunities for various analytical tasks. An organization or
user’s email communication can be leveraged for many different
applications in commerce, security and in managing resources in
networks. In our previous work on the Email Mining Toolkit,
EMT, we describe a number of these and how one may extract a
wide variety of information and models of user and organizational

 behavior for various purposes, including virus detection.
However, email can also be abused. By way of example, in this
paper, we focus on the problem of Spam detection. Spam has been
the subject of much debate, as well as a considerable amount of
research and technology development to detect and eliminate it.

Current estimates indicate that over sixty percent of email traffic
is regarded as spam and there is little reason to expect this
continuous deluge will subside. Recent anti-spam laws and
proposed email protocol changes aiming to restrict how and who
can send emails has only had the effect of changing the way
Spammers send their messages but have not decreased the amount
of Spam.

In much of the research on Spam conducted to date, the research
community has focused on defining a universal definition of
Spam, and general-purpose methods to detect such emails. The
fact remains that although 99% of user’s may agree that certain
emails are indeed Spam, the remaining 1% may actually wish to
receive such emails. Put another way, the true positives of a spam
filter for one user may actually be false positives for a different
user, and vice a versa.

In our work, we define spam as emails unwanted by the user, not
necessarily email deemed by a third party as unwanted. The dual
is also true. Email received by some users may not be regarded by
a third party as Spam, yet those emails may still be unwanted by
the users in question. Our research is thus focused on learning
which email a user may actually want to receive and which they
do not, rather than depending entirely upon a third party arbiter to
decide that central question on behalf of all users.

EMT was designed to analyze email corpora, including the entire
set of email sent and received by an individual user, and to model
the user’s email behavior in order to classify that email for a
variety of tasks, including in this case Spam detection. For
example, EMT can be used to compute models under the guidance
of a user to detect and classifying email into any categorization
they desire. Hence, ordinary users may automatically organize and
manage their own email archive, a criminal investigator may study
a large corpus of email evidence more efficiently, and a network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

KDD’05, August 21-24, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-135-X/05/0008...$5.00.

 2

administrator may more readily determine the entry point of a new
virus attack and the email clients poised for infection.

Recently, supervised machine learned methods have been heavily
studied and reported in the literature to improve the accuracy of
Spam filters. The prior generation of rule-based Spam filters have
failed for many reasons not least of which is the error prone
methods of string matching algorithms [7, 18, 31]. A great deal of
the published work follows the same paradigm of training a Spam
classifier given examples of Spam emails. For example, Naïve
Bayes models to detect Spam was first introduced by [36] with a
Bernoulli word vector model. SVM-based spam detection models
[21, 24] and boosting spam models [5] were compared in [10] and
genetic algorithms versus Naïve Bayes were introduced and
evaluated in [20]. Text distance models [39, 40] and pattern
extraction versus Naïve Bayes were compared in [33]. Further
work has been done using cost-sensitive based learning [1, 2, 17],
extensions to Naïve Bayes bag-of-words modeling [30, 34] and a
comparative evaluations of different Naïve Bayes models [38]. An
excellent overview of these methods and techniques is provided
by [13, 28]. Recently even DNA pattern analysis [35] have also
made it to the spam classification domain. To be sure, machine
learning applied to Spam detection has received intense study
over the last few years.

In this work, we evaluate methods that combine a variety of
different models to determine whether we can more accurately
identify what is truly Spam to a particular user, with the goal of
substantially reducing the number of false positives over any
individual classifier. Combining multiple classifiers to increase
performance is not new. However, methods that combine and
correlate multiple classifiers have not been adequately explored in
the Spam detection domain. In addition, we propose a new model
combination method that correlates a considerably diverse set of
user email behavior models; i.e. not only email content models are
used to advantage, but also user behavior models as well which do
not rely upon the content of emails.

The rest of the paper is organized as follows. We first describe
related work in combining multiple models in the specific case of
spam detection. We then describe EMT and the individual
machine learning models embedded in EMT, and methods for
combining these classifiers. We then present a metric that
estimates the performance of a classifier. This metric guides the
means of combining multiple classifiers to produce an improved
correlated system of classifiers with better overall performance
than any of the component classifiers. We then detail the data sets
and the performance results testing these ideas, comparing
individual classifiers to the performance achieved under different
classifier combinations. The paper concludes with a discussion of
several open problems and future work.

2. Related Work
A considerable amount of literature exists concerning various
methods for combining multiple classifiers. Combining and
correlating models has been used in speech recognition, statistical
pattern recognition, fraud detection, document classification,
handwriting analysis and other fields. Various approaches
combine models using different feature sets, other works correlate
model outputs. An overview of the topic appears in [6, 22, 23].
Numerous studies have shown that combining classifiers yields
better results than achievable with an individual classifier [9, 25].

Some propose combining very strong classifiers (i.e. with low
error rates) [32, 43] assuming that weak classifiers (high false
positives) will not combine as well, or will require too many
rounds of training to achieve low error rates. Measuring the
“competence” of each classifier before combining them is a
common approach as in [3].

In [37] a combination of spam classifiers is proposed. That work
was limited to training a committee of classifiers on a subset of
labeled data, and then training a ‘president’ classifier using the
labeled data plus the outputs from the sub-classifiers.

The method we report combines the output of individual
classifiers each of which outputs a confidence score associated
with the output class label. The individual classifiers are
computed by distinct machine learning algorithms some of which
are trained on independent features extracted from email. We
detail the collection of supervised machine learning algorithm
built into EMT in the following sections.

Some of the earlier work assumes a combination of classifiers
with binary output (good/bad) and [9] points out that only when
the classifiers have uncorrelated errors can we improve their
overall assessment. We show later why the combination of
confidence factors is able to achieve better results than a
combination of binary classifiers.

3. An Overview of EMT
The Email Mining Toolkit developed at Columbia University has
been reported elsewhere [15, 16, 41, 42]. EMT contains behavior
modeling features revealing much information about individual
users as well as the behavior of groups of users in an organization,
and the behavior of file attachments in an email archive. A
number of machine learning and anomaly detection algorithms are
embedded in the system, with a convenient interface allowing a
user to select a variety of features extractable from email. We
summarize some of these features.

Stationary User Profiles - Histograms are used to model the
behavior of a user’s email account over time. Histograms are
compared to find similar behavior or abnormal behavior within
the same account (between a long-term profile histogram, and a
recent, short-term histogram), and between different accounts.

Attachment Statistics - EMT runs an analysis on each attachment
in the database to calculate a number of metrics. These include
birth rate, lifespan, incident rate, prevalence, threat, spread, and
death rate. They are explained fully in [4] and are used to detect
unusual attachment communication indicating security breaches
or virus propagations.

Similar Users - User accounts that may behave similarly may be
identified by computing the pair-wise distances of their
histograms (e.g., a set of Spam accounts may be inferred given a
known or suspect Spam account as a model). Intuitively, most
users will have a pattern of use over time, which spamming
accounts will likely not follow. (Spam bots don’t sleep or eat and
hence may operate at times that are highly unusual.)

Group Communication (Cliques) – Communication graph-based
analyses identify clusters or groups of related email accounts that
frequently communicate with each other. This information is used
to identify unusual email behavior that violates typical group
behavior. For example, intuitively it is doubtful that a user will
send the same email message across all of his social groups. A

 3

virus attacking his address book would surely not know the social
relationships and the typical communication pattern of the victim,
and hence would violate the user’s group behavior profile if it
propagated itself in violation of the user’s “social cliques”.

Clique violations may also indicate internal email security policy
violations. For example, members of the legal department of a
company might be expected to exchange many Word attachments
containing patent applications. It would be highly unusual if
members of the marketing department, and HR services would
likewise receive these attachments. EMT can infer the
composition of related groups by analyzing normal email flows
and computing cliques, and use the learned cliques to alert when
emails violate clique behavior.

Recipient Frequency - Another type of modeling considers the
changing conditions of an email account over sequences of email
transmissions. Most email accounts follow certain trends, which
can be modeled by some underlying distribution. As an example
of what this means, many people will typically email a few
addresses very frequently, while emailing many others
infrequently. Day to day interaction with a limited number of
peers usually results in some predefined groups of emails being
sent. Other contacts communicated to on less than a daily basis
have a more infrequent email exchange behavior. These patterns
can be learned through the analysis of a user’s email archive over
a bulk set of sequential emails.

Every user of an email system develops a unique pattern of email
emission to a specific list of recipients, each having their own
frequency. Modeling every user's idiosyncrasies enables the EMT
system to detect malicious or anomalous activity in the account.
This is similar to what happens in credit card fraud detection,
where current behavior violates some past behavior patterns.

VIP Users - The recipient frequency analysis identifies the
relative importance of various email users. By extending the
analysis to compute the “response rates” to a user’s typical
recipients, one can learn the relative rank ordering of various
people. Those, to whom a user responds immediately to, are likely
important people in the organization.

Besides this rich collection of email user behavior, which do not
rely upon any content-based analyses, EMT also provides the
means of statistically modeling the content of email flows. Several
of these are described in the next section.

4. Supervised Machine Learning Algorithms
For this study we apply EMT’s machine learning models in the
toolkit to study various means of correlating models. Specifically
we used a Naïve Bayes classifier algorithm applied to “non-
content” features, an N-Gram cosine model applied to the body of
emails, a text classifier also applied to the body that is an
adaptation of Naïve Bayes word Tokens, a standard TF-IDF
model common in Information Retrieval application, a specialized
“Limited N-Gram” analysis, and a specialized “URL link” model.
These individual classifiers are used as a basis for the combination
classifiers evaluated in our studies. Each is a machine learning
algorithm used in supervised training to emit a class label and a
confidence score. An EMT user has the means of specifying
arbitrary class labels, and choosing from a rich set of available
features that are extracted from an email archive.

We next provide an overview of each of the component
supervised machine learning algorithms built into EMT and used
in this study.

4.1 Non-Content Naïve Bayes Classifier
(NBAYES)
Traditional machine learning modeling of email has been based
on the textual content of email messages. Typically tokens are
extracted from the email body and sometimes header data then
processed by some machine learning algorithm.

In our prior work, we have proposed and demonstrated how non-
content features can be used to profile and separate virus and
Spam from normal emails [15]. The non-content features are
specific static features extracted from the email envelope which
are not part of the actual message body.

One of the most studied machine learning algorithms for the task
of spam detection has been applying Bayesian classification to
modeling the content of email.

Bayes classifiers are based on early works by [11] in the field of
pattern recognition. Given an unlabeled example, the classifier
will calculate the most likely classification with some degree of
probability. Bayes theorem is a way of calculating the posterior
probability based on prior probability knowledge.

A Naïve Bayes classifier computes the likelihood that an email is
one or another class label given a set of features extracted from
the training emails. The classifier is known as naive because it
makes a naive assumption that the tokens a statistically
independent. In other words, the probability of observing the
combination of a specific set of features is simply the product of
the probabilities. Although this is an over simplification, it greatly
reduces the computational costs of estimating the conditional
probabilities and in practice as been found to work as well as
neural networks and decision trees.

In this classifier the set of features extracted is a set of static
features including sender and recipient email names, domain
names, and zones (domain ending such as com, edu, etc). In
addition, the size of the message, number of recipients, number of
attachments, and the MIME-type of the email are used. For
continuous value features we use a multiple Gaussian estimate to
estimate a probability value as in [19]. More detailed information
about our classifier can be found in [15].

4.2 N-Gram Classifier
When analyzing text, one alternative to using words as tokens is
to take subsequences of the data and use these subsequences as
tokens. The advantage is that we do not need to define what the
notion of a word is for us to analyze the text. This is ideal for
example where some foreign languages which use characters
instead of words.

An N-gram represents the sequence of N adjacent characters or
tokens that appear in a document. We pass an N-character (or N-
word) wide window through the entire email body, one character
(or word) at a time, and count the number of occurrences of each
distinct N-gram. For example for a 5-gram, the sequence `̀Hello
world'' would be mapped to tokens: `̀Hello'', `̀ello `̀, `̀llo w'',
`̀lo wo'', etc.

For email modeling, the algorithm works as follows. We count the
number of occurrences of each n-gram for each email; this may be

 4

viewed as a document vector. Given a set of training emails, we
use the arithmetic average of the document vectors as the centroid
for that set. For an unknown test email, we compute the cosine
distance [8] against the centroid created for the training set. If the
cosine distance is 1, then the two documents are deemed identical.
The smaller the value of the cosine distance, the more different
the two documents are. Cosine distance is defined as:

xy

J

k
k

J

j
j

J

j
jj yxyxyxD θcos)/(),(2/1

1

2

1

2

1

== ���
===

Here J is the total number of possible N-grams appearing in the
training set and the test email. x is the document vector for a test

email, and y is the centroid for the training set. jx represents

the frequency of the jth n-gram (the N-grams can be sorted
uniquely) occurring in the test email. Similarly ky represents the

frequency of the kth N-gram of the centroid.

4.3 Text Classifier
This classifier is a Bayes classifier based on simple word or token
frequency as described in [29]. We calculate the probability of
each token as seen during training using Bayes formula and assign
a confidence score of the predicted class.

�
�
�

∏
∏

=
)|()(

)|()(
max,

NotSpamwordPNotSpamP

SpamwordPSpamP
scoreclass

i

i

4.4 Content-based Naïve Bayes (PGRAM)
Recent work by Graham [12] on the task of spam detection has
floated the idea of a partial Naive Bayes approach, biased towards
low false positive rates. It also uses word tokens, but filters out
predefined common tokens. We incorporate this classifier in order
to compare content based analysis (only over content) to our other
models.

4.5 TF-IDF Classifier
This algorithm is the standard term frequency (TF) document
frequency (IDF) model commonly used in Information Retrieval
applications. The words that appear more frequently in a user’s
email likely will be key to accurate classification of emails rather
than words which appear infrequently. This feature of EMT is
based upon the work reported in [39, 40].

4.6 Limited N-Gram
This classifier is influenced by the work reported in [27] on
finding matching files in a large file system. We adapted that work
to limit the N-grams to a subset of the possible N-grams for
dramatic reduction in computational expense. We calculate an
integer hash value for each subsequence, and only store those
which mod to some primary number. This has the effect of
ignoring over 60% of the subsequences. 10-grams are modeled in
the experiments reported below.

4.7 URL Modeler
Another type of behavior within email is the behavior of a typical
link within an email message. The URL model allows us to
profile a typical URL link found in a user's email. By modeling
the typical URL link we can differentiate between wanted and

unwanted email links. The algorithm was developed to compute
distances between groups of universal resource locators (URLs)
found in sets of emails. For the spam detection domain, non-spam
messages will typically contain embedded URLs that are likely to
be similar to each other and different than those occurring in
Spam messages. We define a distance metric between 2 URLs

yx, given the following formula:

() ()
lengthURL

lengthURLlengthURLiURLiURL
Dist

x

yxyx 2/][][
*200

−+≠
= �

where xURL is the longer URL. The distance is returned as a

number between 0-200 where the smaller the number the closer
the two URLs are to each other. We have also defined 12 types of
URL’s, for example URLs can be found as image links, or ftp
links, or more common http links. These different types of URL
links are also taken into account in the final score.

For each individual email, we group the URLs into a single
cluster. While training, the clusters are formed in the following
manner. All URLs are extracted from a new training example to
form a single cluster. We then evaluate this cluster against all our
current clusters to see if the average difference is under some
threshold, if it is, we merge the two clusters. If it is not, we create
a new cluster with the current set.

During testing, we simply extract all the URLs as a cluster, and
find the minimum distance to any cluster in any class. This is
similar to a K-nearest neighbor algorithm. This distance is then
converted into a confidence score and outputted as a predicted
score. For more details please refer to [14]. The end result is a
measure of how unusual or familiar a URL may be in an email
message given the user’s prior history of emails with embedded
URL’s.

5. Combining Classifiers
The goal of Model combination is to leverage multiple learned
experts over a given task to improve individual model
performance. We may be interested in reducing errors, improving
accuracy, or a combination of the two. In addition, by including
the input of many types of classifiers we can protect ourselves
from risk of any one classifier being compromised.

Many different studies have shown that combination classifiers
either over raw features or over classifier outputs are better than
any single individual classifier in the group. We now present an
overview of some combination algorithms and specifically
illustrate them with examples in the Spam detection domain.

In this study, to detect Spam email, we define a two-class
problem, “normal” and “spam”. The outputs of each of the
classifiers is a class label and a confidence value in the range
[0…100]. However, these outputs are coerced to a single value in
the range [0…201] by a simple mapping technique to simplify the
computation of correlated classifier outputs. We subtract from 100
all scores output by a classifier with label “normal” (resulting in a
0-100 range) and add 101 to any output score labeled “spam”
(producing the range 101-201). Hence, the confidence interval is
measured on a scale from 0 to 201 with 0 regarded as “highly
normal” and 201 representing high likelihood a message is
“spam”. Thus, we may treat the two-value classifier output (class
label and confidence) as a single number simplifying how we

 5

compute a correlation function. We refer to these outputs as raw
scores, which are combined by a number of correlation functions.

The training regime requires some explanation. A set of emails are
first marked and labeled by the user indicating whether they are
Spam, or normal. This information can also be gleaned by
observing user behavior (whether they delete a message prior to
opening it, or move it to a “garbage/spam” folder). For our
purposes here, user’s provided their email files with those
considered Spam placed in a special folder. Those were labeled as
Spam, while all others were labeled as normal.

Once the component classifiers are applied to this labeled email
corpora, the set of model outputs (the classifier raw scores
mapped to the range [0…201]) are combined by a correlation
function. Some of these correlation functions require a training
phase. The component classifiers are tested against their training
data and these model outputs are used to train the correlation
function. Several were implemented and tested. We define each
correlation function as follows.

5.1 Simple Averaging (Equal Weights)
As a baseline combination scheme, scores are simply averaged.
This correlation function requires no training data, as it computes
a final combined model output from the raw scores produced by
each component classifier.

5.2 Learned Weights - Weighted Majority
The weighted majority function is an adaptation from [26]. Each
of the individual classifiers is initially assigned an equal weight
vote.

During training, a threshold is chosen for binary classification
(correct or not) and a tally of scores is computed with the majority
vote as the predicted classification. If the majority of the
classifiers are correct no weights are updated. If it is incorrect, the
algorithm deducts a cost � from each of the classifiers which
contributed to the incorrect vote. Modeled after the work in [26]
we added a term � to each weight of the correctly voting
classifiers. Unlike the original algorithm, we reward classifiers
which had a correct vote when the overall majority were incorrect.

During testing of an email, if the majority of weights are more
confident that the example is Spam, we return the maximum
available raw score produced by one of the component classifiers.
Conversely, if the weights are more confident that the example is
normal, we return the minimum available score.

5.3 Naïve Bayes Combination
In the Naive Bayes Combination algorithm we attempt to estimate
the likelihood of an individual classifier being correct for a given
score.

We can estimate this by studying a classifier's performance over a
training sample. Since ground truth is known, we can measure the
error rate of the classifier and its likelihood of being correct. This
probability is estimated by mapping the scores computed for the
training data of the classifier to pre-defined bins over the range of
the raw scores. We use bins to allow us to cluster scores to
achieve a high statistical sampling and reduce the amount of
computation.

The number of bins, n , is a parameter. For each bin (score
range), we count the number of true spam and number of true

normal samples, while keeping a total count of each class label
seen in the training set. Then, we estimate:

() ()
() () () ()SCPSCPSP

CCCP
CCSCP

CCCSP n
n

n
n ..

..
..

.. 1
21

21
21 δ==

where ()
NUMBERBINSSPAMTOTAL

S
BINSCP

j

j
ji +

+
=

_

1#
,

for the particular bin (note the smoothing terms in the formula).

iC is the ith classifier we are combining. The ()NotSpamCP i

is calculated in a similar manner. The final score is returned in the
range [0-201] by normalizing the estimated likelihood, P(S), that
the sample S is Spam. The normalization is computed as follows:

() ()
() ()NotSpamPSP

SP
SScore

+
= *201

5.4 N Dimensional Naïve Bayes Sampling
The N dimension Bayes algorithm attempts to closely model the
probabilities of the combination of returned scores. We do not
assume statistical Independence among the classifiers, and thus
sample the training examples using an nn × matrix. Intuitively,
we expect that if one of the classifiers return a high probability of
Spam, and one doesn't, we can correct this particular combination
by seeing what the real label was during training and learning the
probabilities. In addition because we do not have classifier
independence we require a small number of bins or much more
data to train upon.

For example if we set the bins to size 50 the range [0…201] will
map to 5 bins (0-49,50-99,100-149,150-199,200+). If we have 2
classifiers to combine, we compute a single 5X5 matrix. If we see
a score of 40 from the first classifier, and 30 from the second, this
will map to location (0,0). The probability can be calculated
during testing by simply extracting values from the matrix seen
during training in the following manner:

()
NUMBERBINSNotSpamS

S
SScore

ijij

ij

++
+

=
1

*201

where ijS is the number of Spam observed and recorded in the

matrix location (i,j). We use a Laplace smoothing factor of

NUMBERBINS
1 , where NUMBERINS is the total number of bins

(n2) we have chosen.

6. Measuring Gains from Model Correlation
There are several ways to measure the performance of the
classifier combination. Zheng et al [43] proposes a novel way
based on the Data Envelope Analysis (DEA) method. This
analysis produces a measurement of how accurate each classifier
is in correctly classifying examples. This is different than ROC
convex hull measurements proposed by Provost and Fawcett in
[32].

Both methods make some strong assumptions about the
performance of the underlying classifiers. For example they
concentrate on combining the best classifiers, trying to measure
what best means. We show how even weak classifiers can be

 6

combined in our context of computing a model correlation
function.

We also propose a new way to measure the gain in the context of
this two class problem, i.e. Spam classifiers. If we were to
calculate the maximum gain from any classifier we could measure
a relative gain in comparison with this maximum. We call this
empirically measured maximum possible gain the Judge
Combination.

6.1 Judge Combination
We would like to estimate the theoretical maximum classification
score available through combining raw scores. We start with a
simple question, how accurate is a combination of classifiers if we
only combine the minimum or maximum available raw scores
from the component classifiers in the correlation function
(essentially ignoring lower scores otherwise)?

Surprisingly, the answer is very accurate! We call the following
algorithm the Judge Combination. Given that we know the correct
classification of an email used to train the classifiers, we return
the maximum available score if it is Spam and minimum if it is
not Spam.

The accuracy achieved by this combination method, is used as the
theoretical limit of a possible combination algorithm and we scale
all our gain results based on this accuracy estimate.

6.2 Gain formula
We define the gain as a convenient measurement of how much of
its accuracy potential a classifier has reached. This measurement
can be used to decide which combination algorithm to use in a
system.

i
i

FP
i

gainclassifier �
=

−=
000,10

0 000,10
)000,10(

_

where FPi is the measured false positive rate of the classifier over
its training data. i is varied by 10,000 to allow two decimal
precision for measuring the false positive rates from 0 to 100. This
is simply the area under the ROC curve, biased towards lower
false positive values. We can calculate the FPi by moving a
threshold over the data and calculating a ROC curve, and then
averaging the results between points to interpolate the graph.

Since the Judge algorithm represents the maximum possible
combination score achievable, we use it to scale the gain score for
each individual classifier as follows:

gainJudge
gainclassifier

gain
_

_=

7. Experimental Setup
A large data set of real email was used to study the model
combination methods. The data set consists of emails collected
from five users at Columbia University spanning from 1997 to the
present, a user with a hotmail account, and a user with a
Verizon.net email account. In total we collected 320,000 emails.
Users indicated which emails where Spam by moving them to
specific folders. These are emails unwanted by each user.

Because current Spam levels on the internet are estimated at 60%,
we sampled the set of emails so that we have a 60% ratio of Spam
to normal. We were left with a corpus of 278,274 emails time
ordered as received by each user.

We tested the models using the familiar 80/20 rule, 80% being the
ratio of training to testing. Hence, the first 80% of the ordered
email are used to train the component classifiers and the
correlation functions, while the following 20% serve as the test
data used to plot our results. This set up mimics how such an
automatic classification system would be used in practice. As time
marches on, emails received are training data used to upgrade
classifiers applied to new incoming data. Those new data would
be used as training for another round of learning to update the
classifiers.

Table 1 Individual Classifier Performance

Classifiers Detection False
Positive

Gain

Ngram 75% 4% 72.2%

URL 55% 10% 32%

TextClassifier 91% 5% 71%

Pgram 87% 2% 77.2%

Limited Ngram 66% 5% 61.4%

Nbayes(non
content)

88% 3.8% 79.8%

TF-IDF 74% 4.2% 61.5%

Ideally, since some of the correlation functions require training
data, we would like to train the combination algorithm
concurrently with the training of the individual classifiers.
Although we could have first given each classifier all the training
examples and then extracted scores over those examples, we felt
that would not reflect the real world setting where only partial
examples of Spam would ordinarily be available, only those seen
to date by the user. To this end, we batched the training data into
1000 examples used to train the classifiers. After each batch, each
classifier was executed to generate raw scores for each of the
examples seen in the current batch. These scores were then input
to the model combination algorithms to train the correlation
function. We used a batch size of 1000 for efficiency purposes,
although any size should be acceptable to achieve comparable
results. We realize, however, that individual classifiers will shift
individual scores depending upon the amount of training data
used. For example, for some classifier, its scoring might be
different if we train 5000 emails rather than say 1000. However,
we preferred to mimic a more realistic training regimen reflecting
how such a system may actually be used as a real application, and
thus we believe this batch approach is not unreasonable.

The data used was pristine and unaltered. No preprocessing was
done to the bodies of the emails with the exception that all text
was stropped to lower case. Headers of the emails were ignored
except for subject lines that are used in some of the non-content
based classifiers. While adding header data would have improved
individual classification, there is much variability in what is seen
in the header, and we felt it might over train and learn some subtle
features of tokens only available in the header data present in the

 7

Columbia data set. For the Ngram, TF-IDF, PGram, and Text
Classifier, we truncated the email parts so that we only used the
first 800 bytes of each part of the email attachment. This was used
for both efficiency and computational considerations. In addition
the increase in detection was about 10% over using full email
bodies. The reason is because of noise in the number of tokens
seen.

Figure 1 - Results of Individual Classifiers

Figure 2 - Results of Combination Algorithms

8. Results
Figure 1 shows the performance results of the individual
classifiers over the email data set. Of particular interest is that the
NBayes non-content, Text Classifier, and PGram classifiers are all
very strong classifiers. Table 1 has the detection rates highlighted
at certain points to give a sense of how well they compare to each
other.

Figure 2 shows the results of combining the classifiers. Table 2
has the combination algorithms and the gains achieved in each
case. Notice that false positives have been reduced by about 3%
and detection improved by about 4% over the best individual
classifiers. This is also reflected in about a 15% improvement in
the gain measurement.

Table 2 - Highlight from combination algorithms

Classifiers Detection False
Positive

Gain

Equal Weights 87% 2.3% 84%

Single
Dimension NB

93% 3.6% 85.1%

Judge
Combination

99% 0.025% -

N Dimension 88.7% 2.3% 84.5%

Weighted
Majority

85.5% 2.5% 79.9%

We next compare the merit of only combining strong or weak
classifiers. In Figure 5 we combined the three strongest
algorithms, namely non-content, text classifier, and pgram. Notice
about a 2% false positive reduction is achieved over the strongest
component classifier.

Figure 3 - Combining Ngram and Ngram-Limited
We compare the combination of Ngram, URL, Limited Ngram in
Figure 6. Surprisingly the weighted majority and NB1 are almost
the same here. Since TF-IDF on a full email body has a very low
detection rate, we tried a combination of URL, TF-IDF(full), and
Limited Ngram in Figure 7. Although there is a negligible
improvement in false positive rate, there is a very strong detection
improvement of about 10%.

In Figure 3 we highlight what happens when combining two
similar classifiers. Notice that the performance of the Judge
algorithm has been significantly reduced, as expected. This
confirms that the individual classification errors strongly overlap,
thus the maximum combination is also lower.

 8

Figure 4 - TFIDF performance

The TF-IDF(full body) classifier was a surprisingly poor
performer and thus represents a weak classifier combination. We
show case what happens to the TF-IDF algorithm as it is exposed
to less of the email parts. The improvements are going from full,
to first 800, to first 400 bytes and compared to NBayes in figure 4.
We also show the combination when we combine the best and
worst classifiers in Figure 8. Notice that the Judge isn’t returning
the theoretical limit and the reason is that TF-IDF doesn’t return a
confidence score, but rather a distance metric to some document
centroid. In addition because it is being trained on the entire body,
the algorithm is being overwhelmed by noisy token probabilities.

Because of this, the scores here are not easily combined by a
simple combining scheme. On the other hand, the Naïve Bayes
combinations are mapping the scores to a probability space, where
there can be interpreted as a confidence value. This is also the
reason that it has been found that combining confidence scores,
works better than combining binary classification. There is
inherently more information in such cases.

Figure 5 - Combining 3 Strong Algorithms

Figure 6 - Combining Weak Classifiers

9. Conclusion
We have investigated several particular model combination
algorithms and plotted their performance using a number of
supervised machine learning classifiers. We inspected several of
the emails that were persistently misclassified by all the
combinations. These peculiar emails comprised messages with
only graphics attached, flaming debates on some news groups,
and some empty emails that had no bodies (their message was
essentially their subject line). We believe that much lower false
positive rates can be achieved on this data set by including
features extracted from the email header data.

In summary we have shown how combination algorithms can be
directly applied to Spam classifiers, and used to improve both
false positive and detection rates on either strong, weak, or a
combination of these classifiers. We rely on the gain formula to
help choose a specific algorithm.

Figure 7 - Combining Weak Classifiers

 9

Figure 8 – Combining Non content Naïve Bayes and TF-
IDF(full body)

A very strong reason to work with combination algorithm is
something learned from the computer security domain: resistance
to attack. Concentrating on only one single classifier, to fine tune
it to perfection, will only encourage spammers to try to, and
eventually defeat, that specific mechanism. By using a
combination algorithm, an email enclave can be protected against
compromise of any single Spam classifier. This is highlighted in
Figure 8 where the scores of the TF-IDF (over full body) can be
thought of being compromised in some fashion so that they do not
reflect a true confidence. The combination algorithms which are
based on remapping probabilities are remarkably resilient in face
of this kind of attack. In reality, a simple equal weights algorithm
can be used, and a second probability algorithm run along side as
a reality check on the performance of the classifier. Having
automatic checks and balances, is one way in which spam
classification can gain user confidence by displaying a confidence
metrics, without requiring the user to trudge through mounds of
spam in the spam folder searching for misclassified examples.

In future work, we would like to combine these classifiers with
some of the open source Spam filters and perhaps to automatically
update the Spam filters when EMT has developed sufficient
evidence for a flood of new Spam. Even so, EMT is being
developed as an integrated solution extending an ordinary email
client program so that users can train a filter to make their own
judgments about email Spam.

The results achieved indicate that EMT is a fairly robust and
accurate system providing a powerful tool for a variety of analysis
tasks. These concepts are applicable to a far wider range of
problems, including virus detection, security policy violations,
and a host of other detection tasks. It is important to note that
testing EMT in a laboratory environment only suggests what its
performance may be on specific tasks and source material. The
behavior models are naturally specific to a site or particular
account(s) and thus performance will vary depending upon the
quality of data available for modeling, and the parameter settings
and thresholds employed. Although the model combination
functions work well in these test cases, there is still other
analytical tasks that should be explored to determine how to fully
automate a model combination and correlation function feature. In
the case of the two-class Spam detection problem, the

methodology is straightforward. This may not be the case for
multi-class learning problems.

Table 3 - Combining Strong Classifiers

Classifiers Gain

Text Classifier 73%

PGram 80.1%

Naïve Bayes Non content 82.8%

Equal weight 84.6%

NB 1 dimension 84%

NB n Dimension 86.6%

Weighted Majority 80.2%

Table 4 - Weak Classifiers

Classifier Gain

Ngram 74.3%

URL 32.0%

Limited Ngram 63.25%

Equal Weights 73%

Naïve Bayes 1 74%

NB n Dimension 65%

10. ACKNOWLEDGMENTS
Special thanks to the IBM Anti-Spam team for letting us work
with them on developing these ideas. Specifically we would like
to thank J. Kephart, R. Segal, M. Wegman, V. T. Rajan, and J.
Ossher. This research was partially supported by an NSF grant
Email Mining Toolkit Supporting Law Enforcement Forensic
Analyses� from the Digital Government research program, No.
�������.

11. REFERENCES
1. Androutsopoulos, I., Koutsias, J., Chandrinos, K.,
Paliouras, G. and Spyropoulos, C. An Evauation of Naïve
Bayesian Anti-Spam Filtering.
2. Androutsopoulos, I., Koutsias, J., Chandrinos, K. and
Spyropoulos, C., An experimental comparison of naive bayesian
and keywordbased anit-spam filtering with personal email
messages. in 23rd annual international ACM SIGIR conference
on Research and development in information retrieval, (2000),
160-167.
3. Asker, L. and Maclin, R., Ensembles as a Sequence of
Classifiers. in 15th International Joint Conference on Artificial
Intelligence, (Nagoya, Japan, 1997), 860-865.
4. Bhattacharyya, M., Hershkop, S., Eskin, E. and Stolfo,
S.J., MET: An Experimental System for Malicious Email
Tracking. in New Security Paradigms Workshop (NSPW-2002),
(Virginia Beach, VA, 2002).
5. Carreras, X. and Mrquez, L., Boosting trees for anti-
spam email filtering. in RANLP-01, 4th International Conference
on Recent Advances in Natural Language Processing, (Tzigov
Chark, BG, 2001).

 10

6. Clemen, R.T. Combining forecasts: A revew and
annotated bibliography. International Journal of Forecasting, 5.
559 - 583.
7. Cohen, W., Learning rules that classify e-mail. in
Machine Learning in Information Access: AAAI Spring
Symposium (SS-96-05), (1996), 18-25.
8. Damashek, M. Gauging Similarity via N-Grams:
Language-Independant Sorting, Categorization and Retrieval of
Text. Science, 267. 843-848.
9. Dietterich, T.G. Ensemble Methods in Machine
Learning. Lecture Notes in Computer Science, 1857. 1-15.
10. Drucker, H., Wu, D. and Vapnik, V.N. Support Vector
Machines for Spam Categorization. IEEE Transactions on Neural
networks, 10 (5).
11. Duda, R. and Hart, P. Pattern classification and scene
analysis. John Wiley & Sons, New York, 1973.
12. Graham, P. A Plan For Spam, 2003.
13. Hallam-Baker, P. A Plan For No Spam, Verisign, 2003.
14. Hershkop, S. Using URL Clustering to Classify Spam,
Columbia University, 2005.
15. Hershkop, S. and Stolfo, S.J. Identifying Spam without
Peeking at the Contents. ACM Crossroads.
16. Hershkop, S., Wang, K., Lee, W. and Nimeskern, O.
Email Mining Toolkit Technical Manual, Computer Science Dept,
Columbia University, New York, 2004.
17. Hidalgo, J.M.G. and Sanz, E.P., Combining Text and
Heuristics for Cost-Sensitive Spam Filtering. in Fourth
Conference on Computational Natural Language Learning and of
the Second Learning Language in Logic Workshop, (Lisbon,
2000).
18. Itskevitch, J. Automatic Hierarchical E-Mail
Classification Using Association Rules, 2001.
19. John, G. and Langley, P., Estimating continuous
distributions in Bayesian classifiers. in Eleventh Conference on
Uncertainty in Artificial Intelligence, (1995), 338-345.
20. Katirai, H. Filtering Junk E-Mail: A Performance
Comparison between Genetic Programming and Naive Bayes,
1999.
21. Kiritchenko, S. and Matwin, S., Email Classification
with Co-Training. in CASCON 2001, (2001).
22. Kittler, J. and Alkoot, F.M. Sum versus Vote Fusion in
Multiple Classifier Systems. IEEE Transactions on Patterns
Analysis and Machine Intelligence, 25 (1).
23. Kittler, J., Hatef, M., Duin, R.P.W. and Matas, J. On
Combining Classifiers. IEEE Transactions on Patterns Analysis
and Machine Intelligence, 20 (3).
24. Kolcz, A. and Alspector, J., SVM-based Filtering of E-
mail Spam with Content-specific Misclassification Costs. in
Workshop on Text Mining (TextDM'2001), (San Jose, California,
2001).
25. Larkey, L.S. and Croft, W.B., Combining Classifiers in
Text Categorization. in SIGIR-96: 19th ACM International
Conference on Research and Development in Information
Retrieval, (Zurich, 1996), ACM Press, NY, US, 289-297.

26. Littlestone, N. and Warmuth, M.K. The Weighted
Majority Algorithm. IEEE Symposium on Foundations of
Computer Science.
27. Manber, U., Finding Similar Files in a Large File
System. in Usenix Winter, (San Fransisco, CA, 1994), 1-10.
28. Massey, B., Thomure, M., Budrevich, R. and Long, S.,
Learning Spam: Simple Techniques for Freely-Available
Software. in USENIX 2003, (2003).
29. Mitchel, T. Machine Learning. McGraw-Hill, 1997.
30. Peng, F. and Schuurmans, D., Combining Naive Bayes
and n-Gram Language Models for Text Classi cation. in 25th
European Conference on Information Retrieval Research (ECIR),
(2003).
31. Pollock, S. A rule-based message filtering system. ACM
Trans. Office Automation Systems, 6 (3). 232-254.
32. Provost, F. and Fawcett, T. Robust Classification for
Imprecise Environments. Machine Learning, 42. 203-231.
33. Provost, J. Naïve-Bayes vs. Rule-Learning in
Classification of Email, 1999.
34. Rennie, J., ifile: An Application of Machine Learning to
E-mail Filtering. in KDD-2000 Workshop on Text Mining, (2000).
35. Rigoutsos, I. and Huynh, T., Chung-Kwei: a Pattern-
discovery-based System for the Automatic Identification of
Unsolicited E-mail Messages. in ceas 2004, (Mountain View,
California, 2004).
36. Sahami, M., Dumais, S., Heckerman, D. and Horvitz,
E., A Bayesian approach to filtering junk e-mail. in AAAI-98
Workshop on Learning for Text Categorization, (1998).
37. Sakkis, G., Androutsopolous, I., Paliouras, G.,
Karkaletsis, V., Spyropoulos, C. and Stamatopoulos, P., Stacking
classifiers for Anti-Spam Filtering of Emails. in 6th conference on
Empirical Methods in Natural Language Processing (EMNLP
2001), (2001).
38. Schneider, K.M., A Comparison of Event Models for
Naive Bayes Anti-Spam E-Mail Filtering. in 10th Conference of
the European Chapter of the Association for Computational
Linguistics (EACL 2003), (Budapest, Hungary, 2003).
39. Segal, R.B. and Kephart, J.O., Incremental Learning in
SwiftFile. in 17th International Conf. on Machine Learning, (San
Francisco, CA, 2000), Morgan Kaufmann, 863--870.
40. Segal, R.B. and Kephart, J.O., MailCat: An Intelligent
Assistant for Organizing E-Mail. in 3rd International Conference
on Autonomous Agents, (1999).
41. Stolfo, S.J., Hershkop, S., Wang, K., Nimeskern, O. and
Hu, C.-W. A Behavior-based Approach to Securing Email
Systems. Mathematical Methods, Models and Architectures for
Computer Networks Security.
42. Stolfo, S.J., Hershkop, S., Wang, K., Nimeskern, O. and
Hu, C.-W., Behavior Profiling of Email. in 1st NSF/NIJ
Symposium on Intelligence & Security Informatics(ISI 2003),
(Tucson, Arizona, 2003).
43. Zheng, Z., Padmanabhan, B. and Zheng, H., A DEA
Approach for Model Combination. in KDD2004, (Seattle, WA,
2004).

