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Abstract

Behavior-based Email Analysis with Application to Spam Detection

Shlomo Hershkop

Email is the “killer network application”. Email is ubiquitous and pervasive.

In a relatively short timeframe, the Internet has become irrevocably and deeply

entrenched in our modern society primarily due to the power of its communication

substrate linking people and organizations around the globe. Much work on email

technology has focused on making email easy to use, permitting a wide variety of

information and information types to be conveniently, reliably, and efficiently sent

throughout the Internet. However, the analysis of the vast storehouse of email

content accumulated or produced by individual users has received relatively little

attention other than for specific tasks such as spam and virus filtering. As one paper

in the literature puts it, ”the state of the art is still a messy desktop” (Denning,

1982).

The Problem: Email clients provide only partial information - users have to

manage much on their own, making it hard to search or prioritize large amounts

of email. Our thesis is that advanced data mining can provide new opportunities

for applications to increase email productivity and extract new information from

email archives.



This thesis presents an implemented framework for data mining behavior

models from email data. The Email Mining Toolkit (EMT) is a data mining toolkit

designed to analyze offline email corpora, including the entire set of email sent and

received by an individual user, revealing much information about individual users

as well as the behavior of groups of users in an organization. A number of machine

learning and anomaly detection algorithms are embedded in the system to model

the user’s email behavior in order to classify email for a variety of tasks. The work

has been successfully applied to the tasks of clustering and classification of similar

emails, spam detection, and forensic analysis to reveal information about user’s

behavior.

We organize the core functionality of EMT into a lightweight package called

the Profiling Email Toolkit (PET). A novel contribution in PET is the focus

on analyzing real time email flow information from both an individual and an

organization in a standard framework. PET includes new algorithms that combine

multiple models using a variety of features extracted from email to achieve higher

accuracy and lower false positive than any one individual model for a variety of

analytical tasks.
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Chapter 1

Introduction

1.1 Email Communication

Email is one of the most popular forms of communication today. The surprisingly

fast acceptance of this communication medium is best exemplified by the sheer

number of current users, estimated to be as close to three quarters of a billion indi-

viduals, and growing (IDG.net, 2001). This form of communication has the simple

advantage of being almost instantaneous, intuitive to use, and costing virtually

nothing per message.

The current email system is based on the SMTP protocol RFC 821 and 822

(Postel, 1982; Crocker, 1982) developed in 1982 and extended in RFC 2821 in 2001

(Klensin, 2001). This system defines a common standard to unite the different mes-

saging protocols in existence prior to 1982. It allowed users the ability to exchange

messages with one another using a system based on the SMTP protocol and email

addresses. These protocols allowed messages to flow from one user to another,

making it practical and easy for different users to communicate independent of the
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service-provider or the client application.

In 1982, Denning (Denning, 1982) wrote about the problem of working with

email, asking

”Who will save the receivers from drowning in the rising tide of infor-

mation so generated?”.

The organization of email files was never adequately addressed by the design-

ers of email client applications. File organization for holding email message stores

has not substantially changed in the last 25 years. Emails for the most part are held

in data files or folders with no structured relationship (flat files), making anything

more than a keyword search very slow. Users may choose to move messages into

time-ordered sub-folders of related messages. Studies have shown that typical users

quickly generate anywhere from tens to hundreds of folders in a relatively short

amount of time. Finding a particular past message across these sub-folders can

easily turn into a daunting task. Not only is the email the subject of search, but

also the folder in which it might have been placed! Within these flat file folders,

attachments are encoded in MIME format making analysis of anything other than

simple filename close to impossible. Recent tools have been released which allow

indexing and searching local data including emails and parts of attachments. How-

ever, there are no widely available email applications with mechanisms to compare

two attachments.

Above and beyond simply sending messages, studies have shown that many

users have quickly adopted email to a variety of tasks including task delegation,

document archiving, personal contact list, reminder and scheduling (Ducheneaut

and Bellotti, 2001; Whittaker and Sidner, 1996). For example, a typical users will
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use their INBOX or main message area, as an active ”to-do list”, leaving current

messages on the top of the list . Even for well organized users who always maintain

past messages in appropriate sub-folders, there remains the possibility of down-

time, and hence, over a relatively short period of time, bursts of email can quickly

accumulate making organization of these new messages a slow and difficult task

(Mackey, 1988).

In addition to these organization issues, the Achilles heel of the current email

system is its relative ease of abuse. The protocols were based on the assumption

that email users would not abuse the privilege of sending messages to each other.

The misuse and abuse of the email system has taken on many forms over the years.

Typical misuse include forged emails, unwanted emails (spam), fraudulent schemes,

and identity theft and fraud through “Phishing” emails. Abuse includes virus and

worm attachments, and email DOS attacks. The common denominator among all

these categories is they exploit the email system’s lack of controls and authentica-

tion of sender and recipient (an inherit problem in a decentralized system). Email

is not permission based, and one can simply send a message without prior approval.

Users should not be expected to pay a repair bill for simply opening an email which

seemed to have originated from a friend’s email address, spoofed by an abuser.

1.1.1 Problem Statement

Email has seen explosive growth of usage in the last twenty-five years. As such, there

are issues and problems facing a system that has not kept abreast of technological

developments.
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1.1.1.1 Information Overload

The combination of low cost, high bandwidth Internet connections, the decline of

the cost per megabyte of storage, and the growth in the number of email users, has

resulted in an explosion of email data per user. Sorting through all of this data, and

separating the good from the bad, is a daunting task. With hundreds of messages,

kept in tens or hundreds of folders, sometimes across different email accounts, this

is close to impossible. If the current trend continues, users will need a fast way

to organize, prioritize, and search their email archives and of understanding the

underlying data. Furthermore, the current set of email clients provides no facilities

to manage and analyze increasing attachment sizes with varied formats, types, and

many copies of edited versions of the same attachment.

To put this in perspective, some medical professionals are now using email

to communicate with their patients. Especially with the rise of ’Boutique Doctors’

patients are paying extra to have constant attention (Zuger, 2005). This may create

a liability issue in the near future; if a doctor does not respond to an emergency

email request in a suitable time frame and patient care is affected. The lack of

a timely response may be treated as an act of indifference, or worse an act of

incompetence. This is not an impossible scenario, either because a spam filter

misclassified the patient’s message, or because the flood of unwanted messages

prevented the doctor from seeing the email on a timely basis.

1.1.1.2 Message Handling

In most current email implementations, the user has almost no control over which

messages enter and exit their email account. A limited amount of control is some-
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times provided through the use of client side filters or rapidly clicking on the delete

key. Many available filters are either hard coded rules, or simple pattern matchers,

directing messages to specific folder destinations (Cohen et al., 1996; Diao et al.,

2000; Provost, 1999).

Some recent progress has been made on automatic methods to help the user

select folders through helpful suggestions (Crawford et al., 2001; Segal and Kephart,

1999). But both works treat this approach as a simple text classification problem

and do not consider the overall picture of the user’s usage of the email system.

In addition, some of the filters operate on a rule-based system and need to be

frequently updated with new rules to remain effective. Anecdotal evidence from

the security domain has shown that this updating phase is the weakest link in the

chain of protection.

1.1.1.3 Message Analysis

When analyzing large sets of emails or attachments generated by a single user or

group of users, the common approach is to treat the problem as if the data was

one large email box. The most sophisticated analysis is to count of the number

of messages in a user created sub-folder. Basic flat searches and name, date, and

topic sorting are the most commonly available functions. In addition, current email

clients have no analysis tools for quickly analyzing past messages or attachments

within a user’s email box. Profile views of the data for different tasks should be

made available to the user, to enable them to understand a message in its historical

context. For example an automatic list of emails which have not received responses

can be generated for the user to show them any ’open issues’ they might have in
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their email box.

Researchers at Microsoft have also begun to work on analyzing user’s email

behavior. The Lifebits project (Gemmell et al., 2003; Aris et al., 2004; Gemmell

et al., 2004) includes email as an important source of information to create new

views to a user of their own historical data.

In addition to the issue of managing large stores of emails for analysis there

is the problem of noise in the data. The propagation of spam email has increased

in noticeable proportions for the last few years (Postini.com, 2004; CDT, 2003).

Junk mail has evolved since the introduction of email, from being an occasional

annoyance to a veritable flood. The background flood of spam is estimated at

between 60 and 80 percent as reported by some ISP’s (Postini.com, 2004; Leyden,

2003). This is effectively a DOS attack against the email infrastructure. Even with

good filters in place, there are messages which are misidentified as either good or

unwanted, which make the analysis of specific folder content harder to accomplish.

1.1.1.4 Protection

Email is a convenient medium to share files as attachments with other users in

a group. Malicious attachments propagating viruses or worms are creating havoc

with the email system and wasting email and IT resources. Current email service

providers utilize one or more integrated anti-virus products to check and identify

malicious attachments. Most current anti-virus products work on the basis of signa-

tures. Experts encode unique signatures to identify malicious programs. Typically,

these signature databases are updated weekly, daily, or hourly depending on the

specific product and configuration. The advantage to a signature-based system is
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the low false positive rates. Because signatures match exact patterns, they can

detect known viruses with very high level of confidence. A strong shortcoming to

this system is that they are based on known virus signatures, and as such, cannot

detect unknown or new malicious attachments, i.e. they do not solve the zero-day

virus problem. Substantial research on using heuristics and machine learning algo-

rithms to learn virus patterns has been explored (Kolter and Maloof, 2004; Jeffrey

O. Kephart and White, 1993; Schultz et al., 2001b; Tesauro et al., 1996), but slow

to propagate to common deployment.

Forged emails represent another side of the same problem. Because the

current email system implementation does not explicitly include any authentication

mechanisms, emails can be easily forged at least on the surface level. A recent story

highlighted this exact problem; multiple security warnings containing malicious

attachments disguised as updates originating from the Microsoft security group

were sent out. It was so believable that it was even mistakenly posted to BugTraq,

a highly respected security mailing list, as a recommended update.

Finally, like credit card users, email users typically have multiple email ad-

dresses or aliases for their different needs. In addition, over time, user typically

change email accounts, as they switch jobs or internet service providers. Currently,

there are no systems to profile the user on one account and apply this profile to

a new or shared account to provide fraud and misuse protection. Fraud detection

successfully applied to both credit card and cell phone usages (Stolfo et al., 1996;

Chan and Stolfo, 1998; Cahill et al., 2000; Hollmen, 1999) has not been applied

to email accounts. On both the client and server level, being able to detect a

fraudulent email would mitigate some virus attempts and prevent email identity
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theft.

1.2 Email Modeling

Our thesis is that advanced data mining and machine learning techniques imple-

mented for email analysis can provide the infrastructure enabling a new generation

of applications that help in solving many of these problems.

In this thesis, we show that a user’s email archive can be used to model

the behavior of a user to protect their email account from misuse and abuse. We

describe an implemented system for mining email data to build a diverse pool of

models based on behavior. We present our results in the domain of spam detection.

To show the general utility of the approach we also describe the use of the same

methods in the framework of a forensic investigator dealing with large amounts of

unclassified and or unknown emails.

The functionality provided by EMT’s behavior-based models can provide

new capabilities to increase the productivity of users when processing their email.

This would reduce the information overload by providing advanced search capabili-

ties for emails and attachments, provide automatic categorization using behavior as

an organizing principle, and permit advanced automatic analysis to reveal typical

behavior that is useful in detecting abnormal email indicative of abuse or misuse.

EMT has an implemented an anomaly detector, priority mechanism, email

file system organization, and email classifier. We describe our system to combine

these new models alongside traditional information retrieval models to augment

email protection. We show how these techniques have utility over the current state

of the art, and show why and how these models can be used in other applications.
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1.3 PET: an Automatic Behavior Modeling Toolkit

EMT has been developed over time by a team of researchers. EMT primarily was

designed for an analyst interested in studying email archives for any purpose. In

our thesis we have designed and fully implemented a new email client application

for end users of email. The Profile Email Toolkit (PET) utilizes EMT as its core

engine, but provides very specific new features to demonstrate the power of email

data mining.

PET extends the current email client application from being a simple reader

application to a more robust analysis tool. In particular, the task of filtering out

unwanted messages can be easily achieved if one were to use behavioral models to

learn which messages are important to a particular user and which are not. It also

allows the user to perform clustering of similar email and reordering email based

on a novel priority scheme modeled on past behavior. A more detailed description

of this scheme and exact definition of similarity is addressed in Chapter 7.

PET includes many of the EMT functions, wrapped in a real-time package.

PET is implemented as an interface to Mozilla’s Thunderbird email client and a

detailed description is provided later in this Thesis.

Here we outline the core features and functions provided by PET. Screen

shots are provided in Appendix A to display the user presentation of the new email

client. PET is also available for downloading by contacting the author.

1.3.1 Data Organization

Most email clients store the email data in some form of a continuous flat file.

We have redesigned this standard storage model to make it easier to access and
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analyze the email data. Email data is stored in an underlying database scheme,

which we describe in section 5.2. This allows the system to quickly find an email

and also build new models based on historical email data. In addition, PET can be

configured to only index the client side email data and keep basic statistics over the

data it has seen. This configuration has the advantage of letting the client email

system manage the email storage allowing client design changes to not affect the

PET system.

1.3.2 Priority Reorganization

Functions embedded in PET , and hooked in the client side application, allows

the user to reorganize emails based upon the user’s prior behavior. This feature is

described in Chapter 7.

1.3.3 Information Retrieval Models

In addition to behavior models, we also embed a set of standard Information Re-

trieval models in PET to allow the user easily train a classifier or combination

of classifiers over some subset of the emails, and automatically classify incoming

emails. These classification models can either be used for prioritizing email or for

the user’s “acceptance criteria”, discussed in Chapter 3.

1.3.4 Behavior Models

We provide a brief overview of the underlying analysis of the models provided by

EMT and embedded in PET.
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Stationary User Profiles - Histograms of past activity are used to model the

behavior of a user’s email account over time. Histograms can be compared

to find similar behavior or abnormal behavior within the same account (be-

tween a long-term profile histogram, and a recent, short-term histogram), and

between different accounts.

Attachment Statistics - PET runs an analysis on each attachment in the data-

base to calculate a number of metrics. These include birth rate, lifespan,

incident rate, prevalence, threat, spread, and death rate. They are explained

fully in (Bhattacharyya et al., 2002) and in section 3.3 and are used to de-

tect unusual attachment communication indicating security breaches or virus

propagations.

Similar Users - User accounts that may behave similarly may be identified by

computing the pair-wise distances of their histograms (e.g., a set of spam

accounts may be inferred given a known or suspect spam account as a model).

Intuitively, most users will have a pattern of use over time, which spamming

accounts will likely not follow. (Spam bots don’t sleep or eat and hence

may operate at times that are highly unusual.) Thus it provides one way of

identifying email senders who behave like spammers, allowing for example an

analyst to quickly weed out potentially uninteresting target emails.

Group Communication (Cliques) - Graph-based communication analysis iden-

tify clusters or groups of related email accounts that frequently communicate

with each other. This information is used to identify unusual email behavior

that violates typical group behavior. For example, intuitively it is doubtful
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that a user will send the same email message across all of their social groups.

Even social announcements (wedding or deaths) typically are not sent to

everyone in one’s email contact list. When some legitimate event does occur

and an email is sent across cliques, one would like to be able to automatically

reference such events when analyzing archived data. From a misuse detection

point of view, a virus attacking an email account book would surely not know

the social relationships and the typical communication pattern of the victim,

and hence would violate the user’s group behavior profile if it propagated

itself in violation of the user’s ”social cliques”.

Clique violations may also indicate internal email security policy violations.

For example, members of the legal department of a company might be ex-

pected to exchange many Word attachments containing patent applications.

It would be highly unusual if members of the marketing department, and

HR services would likewise receive these attachments. PET can infer the

composition of related groups by analyzing normal email flows and comput-

ing cliques, and use the learned cliques to alert when emails violate clique

behavior.

Recipient Frequency - Another type of modeling considers the changing condi-

tions of an email account over sequences of email transmissions. Most email

accounts follow certain trends, which can be modeled by some underlying dis-

tribution. As an example of what this means, many people will typically email

a few addresses very frequently, while emailing many others infrequently. Day

to day interaction with a limited number of peers usually results in some pre-

defined communication patterns. Other contacts communicated to on less
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than a daily basis have a more infrequent email exchange behavior. These

patterns can be learned through the analysis of a user’s email archive over a

bulk set of sequential emails.

Every user of an email system develops a unique pattern of email emission

to a specific list of recipients, each having their own frequency. Modeling

every user’s idiosyncrasies enables the PET system to detect malicious or

anomalous activity in the account. This is similar to what happens in credit

card fraud detection (Chan and Stolfo, 1998; Fawcett et al., 1998), where

current behavior violates some past behavior patterns. Changes in usage

patterns are discussed in 5.4.5 and 3.2.5.

VIP Users - The recipient frequency analysis identifies the relative importance

of various email users. By extending the analysis to compute a ”weighted

response rates” to a user’s typical recipients, one can learn the relative rank

ordering of various people. Within the same organization, to whom a user

responds immediately to, are likely important people to either the user or the

organization.

Besides this rich collection of email user behavior used by PET , which do not

rely upon any content-based analysis, PET also provides the means of statistically

modeling the content of email flows. Several of these are described in Chapter 3.

1.4 Contributions of this Thesis

This thesis builds upon our earlier work on EMT and makes five additional contri-

butions to the field of Data Mining and the related field of Information Retrieval.



CHAPTER 1. INTRODUCTION 14

We briefly summarize these contributions as follows:

Email behavior models - We present new models to represent email usage. These

models represent past usage patterns and calculate current pattern deviations

using standard metrics. The types of models and pattern calculations are de-

scribed in Chapter 3. Our research shows that unwanted messages can be

detected by considering only the behavior of the email user.

Behavior Profiles - We develop the concept of a behavior data structure which

stores the user behavior in a compact representation. The representation not

only allows behavior comparisons to be done efficiently, but also allows a user

to port their behavior profiles between machines and accounts.

Framework for mining email data - We present a data base back-end to store

and analyze email data. The advantage of the database file system is that it

is both fast and scalable. It allows individual features for statistical analysis

to be quickly and easily calculated without having to process all the data

sequentially with a custom built application.

Automatic message prioritization - We introduce a novel scheme to prioritize

messages in an email collection based on past behavior in Chapter 7. The

user’s own behavior can be used as an indication for which messages and users

are more important and hence PET reorders the list of emails based on this

criteria.

Spam classifier model combinations We have developed a novel scheme for

combining various spam classifiers to achieve higher detection and lower false

positive rates. The combination mechanisms are described in Chapter 4.
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1.5 Guide to the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 examines the basic email information organization, modeling and

classification, and filtering techniques. We examine the current state of the art of

the research literature in each of the topics, and enumerate the current available

implementations.

Chapters 3 through 7 discuss how to model email flows, how to combine

models, and how to use them to organize email.

Chapter 3 describes how email is actually represented in the underlying im-

plementation and gives an overview of the machine learning algorithms used in the

system. We present the different types of models and compare them to one another.

Chapter 4 gives the theory behind the methods for combining the email

models. We review current literature and theory to show how this is novel, and

how it has been applied to email data.

In Chapters 5 and 6, we discuss the implementation of PET and the un-

derlying modeling system EMT. Chapters 8 and 9 evaluate the models in use in

real-world scenarios, discuss the results and offer some conclusions.

EMT an automatic email mining toolkit is described in Chapter 5. Chapter

6 covers the main contribution of the thesis, with the design of a pluggable data

mining toolkit for an email client. We have implemented it specifically for Mozilla

Thunderbird but this can be extended for any client. We detail the setup and

organization of the application.

In Chapter 7, we develop the notion of how to group similar email. We define

what similar means in different contexts and how to use it to reorganize groups of
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email messages.

Chapter 8 describes the email corpus, and presents the results of our experi-

ments over the data for the task of spam classification. We review the performance

of different models and different combinations of models.

Chapter 9 concludes the thesis with supporting materials, and reviews user

needs in email data mining and how PET is able to fulfill these needs. We discuss

the implications of the thesis and recommend areas for future research to broaden

the scope of the thesis and its possible application to forensic and behavior appli-

cations.

Appendix A contains screen-shots of the actual EMT application. We will

make reference to this section throughout the thesis.

Appendix B contains a description and outline of the email parser engine.
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Chapter 2

Background

This chapter presents background literature on the areas of organizing, classifying,

and prioritizing emails. We also provide background on the machine learning models

elaborated more fully in Chapters 3 and 4. Once the current state of the art is

presented, we outline the goals of a complete system addressing the shortcomings

of current email clients and illustrate the ideas in the subsequent chapters.

2.1 Mail Organization

Research on how to effectively organize email stores has not attracted a lot of

attention in the research community. A survey of email clients show that for the

most part they do nothing more than store emails as flat files, with the exception

of using indexed data structures for faster retrieval (Gross, 2002).

Piles is a proposal for visually organizing email stores in piles instead of

folder hierarchies (Mander et al., 1992). PostHistory allows individuals to explore

their email archives over time with a unique visual approach (Viegas et al., 2004).
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Other work has proposed using treemaps (Fu, 2003), self-organizing maps (Keim

et al., 2005), and timelines (Mandic and Kerne, 2005) in a similar fashion. Visual

manipulation of an organizing folder is interesting but the scheme might not scale

to the amount of messages in a typical folder (i.e., piles can grow very high and

deep). It has been found that as the number of messages grows, the folder approach

seems to degrade quickly (Whittaker and Sidner, 1996). Visually summarizing the

contents of a folder would be a useful tool for any email user.

Lifestream is a proposal to organize personal data including email as a time-

ordered stream of information (Freeman and Gelernter, 1996), as an alternative to

the primary metaphor of directory or folder organization. The authors point out

that directory organization is inadequate for organizing electronic information and

an alternative principle has not been implemented by any mail client vendors. An

interesting observation made in (Fawcett and Provost, 1997) is the fact that there

is no reason an electronic message cannot be associated to more than one folder

(without maintaining multiple instances). We will expand on this later in section

5.4.1.

This thesis differs from the work on life-streams in several ways including the

use of an underlying database as opposed to flat files, and the use of the behavior

models. The power of an underlying database provides PET with an easy means of

representing data in a more flexible and efficient manner, but also allows a variety of

models to be readily implemented in the style of OLAP. Furthermore, PET reveals

information about a user’s behavior in far more detail than what is available by

Lifestream. This is discussed in detail in Chapter 5.

REmail is an IBM prototype for reinventing email (Rohall et al., 2003; Kerr
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and Wilcox, 2004). Research done has been applied to IBM’s Lotus email client

(IBM, 2005). Although Lotus does have an underlying database design, most users

do not have it deployed on their personal machines and are not as familiar with its

design and use.

Some of the literature have argued (Boardman et al., 2002) that solutions

must encompass other tools outside of the email box. Personal Information Man-

agement (PIM) tools try to bridge the gap between email, scheduling, and other

available tools. We believe that there is still much innovation that needs to be done

before we can abandon the email box. Since users do spend so much time reading

and answering emails, we need to augment the INBOX to provide more information

to help the user without adding to the problem.

2.2 Message Prioritization

Message prioritization refers to the task of reordering a group of messages into an

ordered list relevant to some ordering. In general most email clients will order

messages by timestamp, with newest messages either first or last. Some clients also

allow user to order messages by sender’s or recipient’s email, subject line, and size.

Multiple studies of user email habits have shown great discrepancies between

the types of users and how they maintain order in their mail box (Mackey, 1988).

An overview of different surveys is given in (Cadiz et al., 2001). Their conclusions

are that users use email clients for all types of tasks in their daily routine outside

of the basic send and receive model of message exchange. Furthermore, (Cadiz

et al., 2001) studied the affects of how threaded messages can be used to dealing

with email backlogs while the user is away from the system for a prolonged period
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of time. They concluded that threading was helpful in dealing with the deluge of

emails by helping the user focus their attention to more important messages first.

Prioritization would allow messages to be reordered by importance accomplishing

the same without having to learn the subtleties of a clustering system.

Work by Horvitz et al (Horvitz et al., 1999) studied the prioritization problem

from a cost of interruption point of view. Using a set of email messages labeled by

each user as important, they trained an SVM classifier (Vapnik, 1995) and ordered

new messages based on how confident they were that they matched previously seen

messages. Their goals was to decide if to interrupt the user if a new message arrives,

based on the importance of the trained classifier. Because this is based on trained

classifiers, it can only generalize to classify message based on a snapshot of current

messages, and would have to be retrained over time, to learn new behavior of each

user.

Using software agents in reducing information overload is mentioned in (Maes,

1994; Gruen et al., 1999; Lashkari et al., 1994). The approach uses a memory based

learning approach (Stanfill and Waltz, 1986) to learn appropriate email based tasks

such as reminders, sorting, and action suggestions. But beyond basic prototypes,

user agents still present many problems before they can be actually implemented

for users to use in every day tasks (Nwana, 1995; Wooldridge and Jennings, 1995).

Our approach differs in the fact that we do not aim to replicate a user, but rather

enhance the email experience with email client augmentations.

Studying mail servers on how to predict spam messages and introduce delays

so that non spam messages are delivered more quickly is an approach taken by

(Twining et al., 2004). Although a very promising approach to reduce server loads,
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it ultimately ends up delivering the spam messages albeit with some calculated

delay, leaving it as a problem that the end user needs to address.

2.2.1 Threading

Threading messages, has been used for years by newsgroup readers as a way of or-

ganizing message topics. They are usually based on linking subject lines or looking

at the message ’reply-to’ id in the email header field.

Recent work by (Venolia and Neustaedter, 2003; Kerr, 2003) on visualizing

conversation threads are excellent propositions, once an important or relevant email

has been located. If the user has a few hundred messages sitting in the INBOX,

without priority reorganization, picking the start or middle of an interesting thread

is not an easy task.

2.2.2 Reordering

ClearContext Inbox Manager for Microsoft Outlook has an add-on program to the

Microsoft Outlook email client that features different organizational tools. They

have implemented some priority tools, but do not provide much information on

the underlying technology. They estimate contact priority by using volume as an

indication of importance. We have a more sophisticated model (see Chapter 7), but

can not directly compare the two technologies as they do not disclose much detail

about their implementation.

Related to email organization is work on automatically organizing voice mail

messages in (Ringel and Hirschberg, 2002). They use a static set of past messages

to learn features and try to prioritize voice mail messages based on those features.
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Our work differs in that we are using a rolling model over time, allowing messages

to shift priority as new behavior is observed.

2.3 Email Classification

One way to help the user organize email is to have the email client automatically

either discard or move messages into specific folders for the user’s convenience.

One of the earliest systems (Pollock, 1988), called ISCREEN, had a rich set

of rules and policies to allow the user to create rule sets to handle incoming emails.

Ishmail (Helfman and Isbell, 1995) helped organize messages, by also providing

summaries to the user on the status of what and where groups of new messages

where being moved.

Related to rule-based systems, work studying outgoing email flows that may

violate hard-coded policy rules are presented in (Lee and Park:, 2003; S.Vidyaraman

et al., 2002).

The underlying technology here is the rule-based systems. They make the

assumption that all new emails can be classified by some set of rules. The problem

is two-fold. First, all the rules must be specified by the user, not an easy task for

many users. Second, and more importantly, the rules must be constantly updated

by the user since unwanted email authors would presumably be able to test their

technology against an installed rule system, and adopt. We advocate a system of

automatically learned models from past behavior (the subject matter of this thesis)

rather than a rule-based system for a targeted task. For example for automatic

prioritization, or to automatically archive specific types of emails (e.g. confirma-

tions of receipt of an email) would be an ideal task for automatic models. Fraud
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detection using customer profiles are currently in use in the credit card domain and

cell phone systems (Hollmen, 1999; Fawcett and Provost, 1997; Cahill et al., 2000).

As of yet, they have not been applied to the email domain.

2.3.1 Defining Spam

Email today is not a permission-based service, yet one may observe and model the

individual user’s behavior to calculate a prediction of how a user would treat a spe-

cific message. Computer algorithms can learn what types of emails the user opens

and reads, and those which he/she immediately discards. For example, electronic

bills or annoying forwards from friends might be unwanted, but they are not spam

if the user reads them and sometimes responds. Those emails have a clear source

marked on the email and a relatively easy method will stop those emails (by spec-

ifying a simple filter rule) from reoccurring if the user so desires (block forwards

from user X).

For the day-to-day usage of email the biggest challenge facing users is recog-

nizing and dealing with misuse and abuse of emails. In general this means dealing

with unwanted messages, which can quickly grow and overwhelm most users. To

deal with this problem, many systems are implementing spam filters to automati-

cally move all spam messages to special spam folders.

Informally, most users seem to agree on which of the email messages they

would classify as spam. They can identify spam messages without having to actually

open and read the message, so why shouldn’t computer algorithms be able to do

the same? The envelope of the email plus the user’s past behavior should provide

sufficient information to decide that an email is unwanted and can be comfortably
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filtered.

In a general sense, there has been a weak consensus in the research literature

for an acceptable definition of spam. We employ a simple definition of spam:

Spam - is all email the user does not want to receive and has not asked to receive

(Hershkop and Stolfo, 2005b).

Thus, spam is in the eye of the beholder, and is therefore all unwanted

emails that the user cannot easily stop from receiving. (We distinguish this from

email the user would rather have not received but accepts anyway.) Some of the

recent literature has correctly arrived at the same definition, but also include UCE

(unsolicited commercial email), which only includes a small portion of the overall

spam problem.

Why does spam exist? Email is a very cost effective method of marketing

legitimate products or services to millions of users. Physical bulk mail per recipient

costs are substantially higher (about 100 times higher) than email advertisements

(Mangalindan, 2002). At the same time, email can also be used to conduct scams

and confidence schemes to steal information or user identities (Krim, 2003; Cranor

and LaMacchia, 1998). Although only a minute percentage of email users respond to

spam messages, given the low cost of distribution, it is enough to fuel the popularity

and existence of spammers and spam messages (Sullivan, 2003).

Note, that the definition of spam is entirely divorced from the actual se-

mantics of the email message or the number of recipients of the message. Current

literature focuses the definition of spam relying on the contents of the email mes-

sage, and upon the frequency of re-occurrence of the same email message or body

text among groups of users. Generally the current work defines spam to include
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unsolicited advertisements (CDT, 2003; Hall, 1999; Kolcz and Alspector, 2001;

Manaco et al., 2002) , fraudulent messages (Mertz, 2002; Hidalgo and Sanz, 2000;

Drucker et al., 1999) , and adult content (Provost, 1999; Sahami et al., 1998) emails.

Although all these definitions may be acceptable, all of these are content-

based definitions whose category depends upon the meaning of the message but

which is unknown to the filter. Deriving the meaning of an individual email is a

difficult problem complicated by the fact that most messages are very short and

hard to understand as a standalone document. The literature will usually include

a notice by an author that their definition of spam is somewhat arbitrary based on

individual users’ interpretations of the contents. Our definition does not have the

limitation of content, as it is defined in a sense on a per user basis, and is based

upon the user’s behavior, as we shall explain fully later.

It is important to note that spam is not only annoying to the individual user

(Fallows, 2003), but also represents a security risk and resource drain on the system.

By weeding out spam from the email stream, the user is once again empowered to

use their email for what it was mean to be, a personal communication tool.

Much attention in the recent research literature has focused on the email

spam problem. The current state of the art of anti-spam research and solutions are

for the most part ad hoc efforts concentrating on specific areas of the problem. No

formal study of the entire problem and solution set has been proposed except for a

recent report outlining some data mining issues (Fawcett, 2003). We now outline

current efforts and the state of the art of filtering unwanted messages. Current

solutions can be outlined as detecting and filtering email spam from among the

normal emails. The solutions proposed can be divided into four general approaches:
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preemption, legislation, protocol reimplementation, and filtering.

2.3.2 Identity Protection

The first is preemptive protection; putting the burden of protection on the user.

These methods (CDT, 2003) instruct the user to encode or hide their email address

in such a way so that spammers do not harvest their email addresses. For example

encoding ”example@domain.com” as:

&#101;&#120;&#097;&#109;&#112;&#108;&#101;&#064;&#100;

&#111;&#109;&#097;&#105;&#110;&#046;&#099;&#111;&#109;

Other techniques suggested (Hallam-Baker, 2003) include choosing unusual

email addresses, hiding them as graphics, and using multiple throwaway or one time

use email accounts. Extend-able email addresses (Gabber et al., 1998) is a related

solution, which works on the basis of adding a hash to the beginning of the email

address and then hard coding rules as to what to do with each hash. For example,

Shlomo@cs.columbia.edu would become Shlomo+Xdf345@cs.columbia.edu with

the email server responsible for delivering the message to the correct recipient, and

the end user running rules on how to treat each hash. An automatic system to

generate alias accounts, and to time bound them is proposed in (Gburzynski and

Maitan, 2004). Single purpose address (SPA) schemes encode the policy in the

email user string to allow automatic policy enforcement (Ioannidis, 2003). In these

scheme the SMTP protocols remain the same, but the user gains the ability of

generating unlimited emails addresses.

We challenge the underlying assumptions that it is the user’s problem to deal

with the reality of spam and must accept inconveniences in order to use the email
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system. This would be ideal if the level of spam was only for example two percent of

the total email traffic, not the flood that it is. Additionally it forces users to learn

unusual email extensions and makes it hard to give out email addresses without

looking up an extension. A subset of this approach is also hiding schemes that try

to encode email names on public Internet web pages in such a way that make it

easy for users to see, but hard for spam programs to pick up. We see no reason

why spam bots can not be upgraded with some simple rules or OCR techniques to

recompose these hidden email addresses.

2.3.3 Legislation

The next approach proposed to dealing with the Spam problem is legislation. We

address this issue only because it is being actively debated and pursued by a com-

munity who has the rather sobering view that no technological solution will suffice

to solve the spam problem (Weiss, 2003). Legislation aims to solve the problem of

unwanted messages by creating laws governing the use of email. Recent laws such

as Can-Spam (Controlling the Assault of Non-Solicited Pornography and Market-

ing Act of 2003) (U.S. Senate and House of Representatives, 2004) have had little

effect except to make it harder for legitimate advertisers and mailing lists to send

out bulk email. Those who ignore the law will be happy to continue ignoring the

law. Since going into effect on January 2004, spam levels have not in any way been

affected or slightly increased (Gaudin, 2004; Fallows, 2005) and in fact, it actually

legalized certain forms of spam (Lee, 2005). Some feel, that having additional laws

will just have the effect of having the spammers send out email from servers that

are out of jurisdiction of the law.
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In addition, recent reports (ZDNet UK, 2005; Leyden, 2003) suggest 80

percent of spam is sent out from compromised hosts leaving the question of who is

responsible still up in the air. Further laws might make ordinary people responsible

or their hijacked machine’s spam behavior.

2.3.4 Protocols

The next solution that has been proposed calls for the overhaul of the entire email

system transforming it into a permission-based system. Making the assumption

that a new protocol might solve the problem once and for all, designers have sug-

gested multiple ways to fix all the security concerns and authentication mechanisms

of the current system. The first problem is that the current open email system is

very much entrenched, making it unrealistically hard to implement a new protocol.

Second, deploying a new system across the entire Internet in the foreseeable future

is a very hard task.

In this thesis we are only interested in those solutions which work within the

current SMTP protocols. There are many original solutions to deal with the spam

problem that unfortunately require a complete overhaul of the current protocols.

For example related to protocol changes, challenge-response systems try to make

sure a human is at the other end of a first email from a new user. That is a really

good idea, until one realizes that the entire Internet does not necessarily speak or

understand the same language. For example, a user who would want to register

a product through email, might have to contend with a challenge in some foreign

language. This would also require some level of sophistication from most users,

something hard to imagine given past performance on other technology issues.
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SPF (Lentczner and Wong, 2004) would add a caller-id like feature to email

servers. Ideally this would ensure the identity of the sender. However, protocol re-

design solutions are for the most part impractical at this point, as the current system

is tightly integrated into many subsystems, and cannot be replaced overnight. To

give a simple example, many sensors and appliances will send out alerts on the

network using the email protocol. Under SPF, these messages would be prevented

from being delivered, as they are not registered. Some of the larger ISP’s are try-

ing to adopt SPF as a spam solution, but SPF’s own website clearly states it is

only to prevent forged from lines in email headers, and not as a means to address

all spam. In addition political issues between competing ISP SPF solutions have

thrown other barriers in the way of implementation (TrimMail, 2005).

There are other proposals closely related, based on a payment scheme such

as HashCash (HashCash.org, 2002), BondedSenders (Bondedsender.com, 2005), or

email postage (GoodMail.com, 2003), which would make sending emails a costly

billable service. The assumption is that by increasing the costs we can make spam

too costly to send from bulk mailers (Goodman and Rounthwaite, 2004). Related

to monetary charge, is a computational cost per email sent (Dwork et al., 2003). In

both schemes the current protocols would have to be redesigned. Second, some of

the solutions would make individuals responsible for spam sent from their compro-

mised email address or compromised host machine on a monetary fashion. This is a

problem since there is a breed of malicious programs which turn personal comput-

ers into zombies. These zombies are used for various nefarious purposes including

sending spam, which would leave the owners responsible for the cost of sending

spam under some of these schemes. In framing the spam problem in terms of dol-
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lars and cents makes the assumption that for the right price, spam can be offered

to the end user (Fahlman, 2002; Dai and Li, 2004).

2.3.5 Spam Filtering

The last approach tries to filter out spam email messages from the user’s email box

by identifying which messages are likely to be spam and which are not. There are

three popular methods for filtering out spam: white lists, black lists, content based

filtering, and various methods combining all three. Surveys can be found in (Diao

et al., 2000; Mertz, 2002; Pazzani, 2000; Massey et al., 2003; Zhang et al., 2004;

Allman, 2003; Sipior et al., 2004; Eide, 2003)

2.3.5.1 Lists

White lists are lists of allowable sources of emails which the destination node trusts

as a legitimate source of messages. These are usually implemented at the client side,

though some have proposed using white lists at the gateway to a single domain.

The destination node constructs the list at some point and extends the list over

time. Many systems, such as Hotmail, automatically prompt the user to add new

(non white listed) email recipients to the list, as part of sending out each message.

This approach somewhat alleviates the traditional spam problem, as the

source email address in the spam is not usually a member of the white list. In the

real world, setting up a good white list is not trivial, and in fact has a negative

impact on the convenience of using email. It is also easy for a spammer to circum-

vent this filter by spoofing white listed email addresses in general and specifically

between users in a single organization.
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Black lists are lists of those sources (usually IP address ranges or domains)

from whom the user does not wish to receive email. These lists are supposed to

represent known spam sources. For example, open relays are those mail servers

that allow third-parties to send mail to any other third-party to essentially proxy

the identity of the originating site. Because of this anonymity, they are assumed

to be a frequent source of spam emails. These black lists are compiled and distrib-

uted widely; if the source email originates from an ip address in the black list, it

will be discarded. Example of such lists are spamhaus (Spamhaus, 2005), dnsrbl

(DNSRBL, 2005), and spews (Spews, 2005). Although historically most spam have

been traced to open relays, zombies now account for more than 60% of seen spam

according to many estimates (Leyden, 2003; Spring, 2005).

Systems such as Hotmail, allow the user to specify a list of users to block,

and the list is limited to for example 256 email addresses. Because spammers

typically forge their source emails, this list quickly fills up and becomes ineffective

at stopping spam messages.

In real world deployment the black list technique has been getting negative

feedback as many people have found their email servers added to a black list for no

apparent reason (typically as a form of denial of service as a consequence of address

spoofing). Especially on well-distributed black lists, the burden of proof is shifted

to the source user, basically making it almost impossible to prove their innocence.

For example, recently AHBL (AHBL, 2004) a popular black list source, decided to

put all Spanish traffic on their blacklist (Knight, 2005). In addition to arbitrary

inclusion, these lists require frequent updates to keep the blacklists up to date and

thus suffer from lag time vulnerabilities. This implies that there is a period of time
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when a new computer starts to send out spam, until the black lists users will detect

and stop responding to that computer. In addition long term observations seem to

imply that black lists are not careful about maintaining the lists over time to allow

legitimate users to use ip once used by spammers (Jung and Sit, 2004).

2.3.5.2 Filtering

We focus attention on content-based filtering, which has garnered attention in the

popular media for being the next ”all-inclusive” spam solution (Graham, 2002).

Because most of the recent research on improving email clients has been the focus

of better filters, we address them here in depth.

One of the most popular techniques has been to filter spam emails based on

the textual content part of the email. There are two general approaches. The first

uses hard-coded rules that are periodically updated for and by the user (Crawford

et al., 2001; SpamAssassin, 2003; Ahmed and Mithun, 2004). Each email is given a

certain amount of ’spam’ points based on some rule set. If a specific email exceeds

some arbitrary threshold score the system typically quarantines it for later review

and deletion by the user.

An approach called collaborative spam detection (Gray and Haahr, 2004;

Kleinberg and Sandler, 2004) allows groups of users share information about spam

content. For any message received, a local client or server checks a signature of

the message against a global server list to see how frequent the message has been

reported as spam. If the message has been reported as spam above a specific thresh-

old, the user considers it spam. One way which these lists are seeded is by creating

millions of fake email accounts visible only to spam programs which harvest email
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addresses. Any message received by these addresses are almost always guaranteed

to be spam. A shortcoming of this system is the susceptibility to mimicry attack

when a legitimate message is sent to many of these fake email addresses. DCC

(Rhyolite Software, 2001) and Razor (Prakash, 2005) are two examples of this ap-

proach.

There are dozens of commercial and open source spam filtering solutions for

either the client side, server side, or both using any combination of the above men-

tioned approaches. Commercial solutions include most commercial email clients,

Symantec Brightmail, Postini, CipherTrust, and Barracuda among others (Metz,

2003). Open source solutions include Bogofilter, CRM114 (Yerazunis, 2003), DSpam,

Spamassassin (SpamAssassin, 2003), and Spambayes, among others (Asaravala,

2004). Some commercial solutions are designed to receive the user’s email first and

then forward the email to the user as either labeled email (which filtering rules

can be applied) or only spam free email. Examples are Spamcop (Corporate Email

Systems, 2002), Cloudmark, and BrightMail. The inherent danger to both content

privacy and false positives messages need to be considered with external filtering

solutions.

2.3.5.3 Machine Learning Models

The second approach uses machine-learning models, leveraging work done on text

classification and natural language processing applied directly to spam. A training

set of emails is created with both normal and spam emails, and a machine learning

technique is chosen to classify the emails. For performance reasons, the usual

method is not to have an online classifier, but rather a preset offline classifier,
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which automatically classifies the emails for the user behind the scenes based on a

static model.

Content-based filtering has been shown to be very accurate with some ex-

periments claiming accuracy as high as 98.8% for certain data sets (Graham, 2002;

Yerazunis, 2004; Siefkes et al., 2004). These numbers do not reflect two very im-

portant factors of the real world driven by the economics enjoyed by spam senders.

The first is that the nature of spam content is dynamic and changes over time; it

is constantly being updated to reflect changing social norms. The second is that

there is a financial incentive for spammers to circumvent the filters so that their

message can be delivered to end users. Filtering models based on content alone

do not reflect the reality that spammers are clever enough and have a financial

motivation to adopt their messaging to avoid having their messages easily filtered.

We note, that independent tests do not always achieve such high accuracy numbers

in part to these factors (Snyder, 2004).

2.3.5.4 Content Based Features

Most filtering systems using machine learned models base their feature sets on the

actual contents of the message, either as a fixed length word vector or dividing the

text into tokens, and scoring the message by some model applied to these vectors

or tokens. Although usually not addressed by the literature, the practice is to

sometimes ignore binary attachments or header data when analyzing messages. It

has been shown that header information is as important in analyzing emails as the

content (Zhang et al., 2004).

One of the earliest filters based on machine learning models was applied to
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email flames (Spertus, 1997) and spam (Sahami et al., 1998). Sahami et al proposed

using a Näıve Bayes model to filter spam. For their model, they used the 500 highest

frequency tokens as a binary feature vector, 35 hand-crafted rule phrases, and 20

hand-crafted non-textual features such as the sender’s domain. They make some

strong assumptions, which most of the early literature assumes to be a true. The

first is that spam can be detected based on textual content alone , just like any

other information retrieval task. A second assumption is that they could make

broad generalities on accuracy and detection rates based on their local corpus of

only 2500 emails.

Later work introduced the bag of words model (Androutsopoulos et al.,

2000b; Androutsopoulos et al., 2000a), i.e., treating each word as a token, bas-

ing token probabilities on those found within the email body along with adding

a cost associated with either deleting or marking emails as spam. Comparison

between words and tokens has shown promise in estimating priors (Peng and Schu-

urmans, 2003). Applying a mix of machine learning techniques including Näıve

Bayes (Pantel and Lin, 1998; Provost, 1999; Sahami et al., 1998; Androutsopoulos

et al., 2000c; Iwanaga et al., 2004) cost evaluation (Androutsopoulos et al., 2000b;

Androutsopoulos et al., 2000a; Kolcz and Alspector, 2001), boosting trees (Carreras

and Márquez, 2001), TF-IDF (Segal and Kephart, 2000; Cohen, 1996), support vec-

tors (Kolcz and Alspector, 2001; Rios and Zha, 2004), gene analysis (Rigoutsos and

Huynh, 2004), hash values (Yoshida et al., 2004), training combinations (Sakkis

et al., 2001), statistical correlation (Gee, 2003), and complex systems (Segal et al.,

2004) have all been tried. Even one-class detection, that is training on only spam

examples has been attempted (Hershkop, 2004; Schneider, 2004).
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Accuracy and recall results from the different experiments in the literature

show promise (in some cases), but these filters are susceptible to attacks because

of one simple reason. They are all mostly based on the contents of the message. A

spammer can with little work create millions of combinations of messages without

using any of the tokens seen in past messages, as shown in (Hall, 1999). In fact this

is very close to what is known as mimicry attack in the security domain (Wagner and

Soto, 2002). Although it is hard to judge if spammers have been taking advantage

of this, one must make the assumption that eventually someone will think of trying

it.

2.3.5.5 Non-content Features

An alternative to modeling the contents of each message, has been to study the

behavior of the messages. Looking at group communication, attachment flows, and

usage trends can all be used as features to help classify email.

There has been some reported work on finding groups of email users as dis-

cussed in our work and others (Stolfo et al., 2003b; Tyler et al., 2003). ContactMap

(Nardi et al., 2002) is an application which organizes a visual representation of

groups of users, but does not consider the case of emails that may violate group be-

havior as implemented in EMT (Stolfo et al., 2003b). Finding connections between

messages based on content topics through threading has been extensively discussed

in (Vel et al., 2001; Vel et al., 2002; Murakoshi et al., 2000; Lewis and Knowles,

1997; Lane and Brodley, 1998; Cohen et al., 1996). These are all published acad-

emic works, which have not made their way into common email client programs as

far as we are aware.
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Our work differs than what is implemented in PEA (Winiwarter, 1999) in the

fact that their features are only based on the content of the messages. In addition

they use an expensive “evolutionary algorithm” to model the problem. They also

rate documents based on past usage to some extent, but concentrate on how to

place messages into folders rather than utilizing it for other purposes. We note the

fixation of ’folder only views’, which we will address later in section 5.4.1.

In short most of the current research in the domain of email has been concen-

trated on weeding out unwanted messages and not on the bigger picture of evolving

the role which email has come to play in day to day use.

2.4 Model Combinations

A considerable amount of literature exists concerning various methods for combin-

ing multiple classifiers. Combining and correlating models has been used in speech

recognition, statistical pattern recognition, fraud detection, document classifica-

tion, handwriting analysis and other fields. Various approaches combine models

using different feature sets, other works correlate model outputs. An overview of

the topic appears in (Clemen, 1989; Kittler and Alkoot, 2003; Kittler et al., 1998).

Numerous studies have shown that combining classifiers yields better results than

achievable with an individual classifier (Dietterich, 2000; Larkey and Croft, 1996).

Some propose combining very strong classifiers (i.e., with low error rates) (Provost

and Fawcett, 2000; Zheng et al., 2004) assuming that weak classifiers (high false

positives) will not combine as well, or will require too many rounds of training

to achieve low error rates. Measuring the “competence” of each classifier before

combining them is a common approach as in (Asker and Maclin, 1997).
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In (Sakkis et al., 2001) a combination of spam classifiers is proposed. That

work was limited to training a group (referred to as a committee) of classifiers on

a subset of labeled data, and then training a ’president’ classifier using the labeled

data plus the outputs from the sub-classifiers.

The combination methods described in this thesis in chapter 4 combine the

output of individual classifiers, each of which outputs a confidence score associated

with the output class label. The individual classifiers are computed by distinct

machine learning algorithms, some of which are trained on independent features

extracted from email. We detail the collection of supervised machine learning al-

gorithms built into EMT in the later sections.

Some of the earlier literature assume a combination of classifiers with binary

output (good/bad) and (Dietterich, 2000) points out that only when the classifiers

have uncorrelated errors can we improve their overall assessment. We show later

why the combination of confidence factors is able to achieve better results than a

combination of binary classifiers.

Related work on enhancing email clients by adding meta-data to email sys-

tems exists in very limited fashion (Itskevitch, ; Macskassy et al., 1999; Manaco

et al., 2002; S.Vidyaraman et al., 2002; Segal and Kephart, 1999; Winiwarter,

1999). These proposed systems, some with advanced functionality, have in some

very limited extent affected the standard clients but not in any organized fashion

relating to email utilization. Sometimes the underlying theme in the literature was

a belief that the only useful work the user would need is a suggestion as to which

folder a message should be classified (Segal and Kephart, 1999; Mock, 1999). To

our knowledge no formal work has been done on user behavior modeling as an or-
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ganizing principle for automatically suggesting actions the user would take for a

particular message (such as deleting it).

The work presented in this thesis on spam filtering is unique in the fact that

it tries to filter out spam using behavior as a model. Each email received over

time, by a particular user, forms a larger picture of the individual’s email account

behavior. The behavior models in this Thesis consist of non-content features which

help distinguish spam email from normal email. The features help identify spam

without having to parse or token-ize or otherwise interpret the contents of the body

of the message. Thus, we use statistical features that profile the user’s behavior to

provide evidence that a received message is indeed one the user would ordinarily

filter. This concept of email behavior profiling using machine learning techniques

(for security tasks) was first introduced in Columbia’s Malicious Email Tracking

(MET) and Email Mining Toolkit (EMT) systems (Bhattacharyya et al., 2002;

Stolfo et al., 2003b; Stolfo et al., 2003a). In the upcoming chapters we will detail

the theory behind the email models, and describe the implementation of our system.
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Chapter 3

Email Models

To effectively model the information in an email collection, we need to represent

it in a form amenable to analysis. In this chapter, we introduce the models used

to represent email messages, email communication, and email flows. These models

consist of traditional information retrieval and text classification models, and new

behavior based models introduced in our work on EMT.

3.1 Classification Models

We first briefly overview the theory behind machine learning modeling. We then

step through each of the specific classification and behavior models presented in

the thesis. Before continuing, we will define some common terms used in the text.

Features - or attributes are the alphabet of language we are mathematically mod-

eling. A set of attributes describe an instance, that we would like to label.

For example when modeling the body of an email, a typical feature would be

a word in the body of the message. These individual features are sometimes
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preprocessed and converted to a specific type value which is processed by a

machine learning algorithm.

Target Function - or class label is the pattern we are trying to learn. For ex-

ample, in the spam detection task, given an unknown email, we would like

to predict with some degree of confidence whether it is spam or not. In this

case, “is it spam?” is the target function.

False Positive Rate - is the percentage of examples which our model has misiden-

tified as the target concept. Generally our goal is to minimize this measure-

ment while not increasing the error rate. Generally the cost associated with

false positives are higher than false negatives. The false positive rate is com-

puted as:

FP rate =
# misidentified as target examples

total #non-target examples
(3.1)

False Negative Rate - is the proportion of target instances that were erroneously

reported as non-target. When tuning the detection algorithm we must find a

balance between false negatives and false positives. A threshold is used over

all examples the higher this threshold, the more false negatives and the fewer

false positives. The false negative rate is computed as:

FN rate =
# misidentified as non-target

total # of target examples
(3.2)

Sample Error Rate - is the percentage of examples of the training that the model

has misclassified divided by the total number of examples seen. This is one

measure to estimate how well the classifier has learned the target function.
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True Error rate - is the probability that the model will misclassify an example

given a specific training sample and sample error rate. This measurement

is hard to accurately measure, but can be approximated if the training set

closely resembles the true distribution of future examples. In other words,

if we train on half spam and half non-spam examples, but in reality 90% of

examples will be spam, the sample error will not be an accurate measurement

of the model’s error rate.

Bias - is the difference between what we expect the model behave and its actual

performance. Classification bias is the tendency of a machine-learned model

to bias its output towards any one output value as measured during the

concept training.

Training - is the process of teaching a model some target concept. During training

specific examples are shown to the model and are used to tune the model’s

parameters.

Testing - is the process of evaluating the model classification effectiveness. If we

have a labeled set of examples which are not shown to the classifier during

training, and making the assumption that the testing set represents an accu-

rate statistical sample of examples, we can measure the accuracy of a classifier

to generalize the training examples.

Noise - is corrupt labeled data, that is data which for one reason or another is

mislabeled. Certain algorithms are robust, i.e. unaffected by noise in the

training data, while other require clean data to be able to measure ground

truth. Real world data is often noisy; typically its is hard and expensive to
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acquire clean data.

3.1.1 Machine Learning Theory

Supervised learning is the task of classifying unknown data using models trained

over labeled data. In the email domain we have a set of labeled email and we aim

to learn a classification function which will help us distinguish new unknown emails

into an accurate class function. In the spam detection task, much of the research

literature has cast the problem as a binary classification problem, i.e. we are trying

to determine if a new email is spam or non-spam. In general there is no reason

to limit it to a two class problem, but we illustrate it with binary classification to

make the analysis somewhat simpler.

In general machine learning, most algorithms require clean data. Acquiring

a large set of clean and accurate data is a non-trivial task in most domains. In

addition, we would like the training samples to reflect the general population for

which the model will be operating in, something which is not always easy to achieve.

Unsupervised learning is the other side of the coin. In this context, we seek to

extract patterns from unlabeled training data and then assign new data into some

set of categories. This can also be viewed as a clustering task, i.e. first grouping

the training data into a number of sets (i.e clusters) and then fitting new data into

similar data clusters. The exact definition of similar is algorithm dependent.

In both supervised and unsupervised learning, our goal is deduce from the

training data the best pattern to describe the data in general terms. The “best”

would mean the most probable pattern fitting the past observation in the training

and at the same time be accurate for any future date we encounter. We define P (C)



CHAPTER 3. EMAIL MODELS 44

to be the probability of class C before observing any data. This is also referred

to as a priori probability, and we can leverage outside knowledge about a problem

domain in calculating it. In general we write P (a|b), which denotes the conditional

probability that a occurs given b. We are also interested in P (C|data), which is the

probability of class C, given we have seen a specific set of data. This is known as

the posterior probability because it reflects a confidence measure in the class, after

seeing a specific set of data points.

A very hard question to answer is how accurately can we learn a pattern from

a set of data and how well does it generalize. Fortunately for machine learning this

is a well studied statistical problem of estimating a proportion of a population

which have some pattern given a random sample of the population. By collecting

a random sample and seeing how the model performs over the sample, we can

estimate the model misclassification rate.

Measuring the performance of the model over training data is equivalent

to running an experiment with a random outcome. As more random samples are

measured, we can measure the amount of errors for the specific model. The error

rates over the training sample is the sample error, which we are using to generalize

to the true error rate, or the model’s performance over future data. The model

bias is the average difference between what its actual behavior is and what we had

estimated it to be. It has been shown that a binomial distribution can characterize

the probability of observing r errors in a data sample containing n randomly drawn

samples. r
n

is our sample error rate observed during the training period. The

confidence that the sample error rate closely mirrors the actual error rate can be

calculated using a confidence interval. For the binomial distributions this can be
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tedious, but easily found if we use a normal distribution to approximate it. As

n grows larger, the binomial distribution is closely approximated by the normal

distribution, which has well known statistical properties for its mean and variance.

3.1.2 Modeling Emails

Data mining in the email domain has been applied in the past to the problem of

automatically classifying email and determining its proper “folder” (Cohen, 1996;

Segal and Kephart, 1999). Recently has data mining been applied to studying task

extraction and social network analysis (Whittaker et al., 2005; Rohall et al., 2003;

Tyler et al., 2003; Johnson, 2003; Culotta et al., 2004).

Beginning with learning rules to classify emails, and then evolving into study-

ing various machine learning algorithms for filtering spam, they both shared a com-

mon misconception. The notion that based only on the body of the email, we cam

extract enough features is a strong underlying assumption. The reason this devel-

oped was for the most part to minimize the complexity of the problem and also

allow general conclusions to be determined from localized email sets. In addition

the problem was viewed as a simple IR task, thus ignoring a significant portion of

features in the data.

It has been shown (Bhattacharyya et al., 2002; Hershkop and Stolfo, 2005b)

that email contains a rich set of features, which when used in a data mining frame-

work can provide additional models to be used for both traditional email classifi-

cation and newer anomaly detection tasks. These features can be harvested from

emails allowing a rich set of behaviors to be extracted. EMT has leveraged this

and implemented a rich collection of models to extract and learn patterns from the
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underlying data in a semi autonomous fashion.

We now present a brief overview of several commonly used machine learning

algorithms. Specifically we present Näıve Bayes, N-Gram, text classifier, TF-IDF,

URL, and a “Limited N-Gram”. We then present the behavioral models includ-

ing usage, communication, attachment, and cliques. We will provide a detailed

explanation for each of the models presented.

3.1.3 Näıve Bayes

One of the most applied machine learning algorithms for the task of spam detection

has been the Bayesian classification algorithm to modeling the content of email.

Bayes classifiers are based on early works by (Duda and Hart, 1973) in the

field of pattern recognition. Given an unlabeled example, the classifier will calculate

the most likely classification with some degree of probability. Bayes theorem is a

way of calculating the posterior probability based on prior probability knowledge.

Bayes theorem states:

P (A|B) =
P (A)P (B|A)

P (B)
(3.3)

Notice that the right side of the equation can be calculated based on esti-

mating the probabilities from the training set, making the strong assumption that

the training set represents a true sample of the domain. For a set of features

f1, f2, . . . , fn which describe a problem instance, and a target label (L), Bayes the-

orem becomes:

P (L|f1, f2, . . . , fn) =
P (f1, f2, . . . , fn|L)P (L)

P (f1, f2, . . . , fn)
(3.4)
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The P (L) can be easily estimated from the training data by simply count-

ing the frequency of the particular target label L. Getting an accurate count for

P (f1, f2, . . . , fn|L) is not possible unless we gather a huge amount of data. This is

because we would be required to observe every instance in the instance space many

times to get a reliable estimate.

This can be addressed by making a simplifying assumption; namely that

the features are conditionally independent. The classifier is known as a Näıve

Bayes classifier. It is called naive because it makes a naive assumption that the

tokens a statistically independent. In other words, the probability of observing the

combination of f1, f2, . . . , fn is simply the product of the probabilities. Although

this is an oversimplification, it greatly reduces the computational costs of estimating

the conditional probabilities and in practice as been found to work as well as neural

networks and decision trees (Mitchel, 1997; Schneider, 2003). The näıve Bayes

estimate is:

arg max
ci⊆C

P (Ci)
∏ fc + mp

nc + m
(3.5)

Where Ci is the specific target class, fc is the count of the particular feature

per class, nc is count of total unique feature tokens in the target class, m is a con-

stant called the equivalent sample size, and p is a uniform distribution for discrete

values (Mitchel, 1997).

Notice that the algorithm is based on analyzing specific feature tokens, and

does not directly deal with numerical features. One simple way to deal with numer-

ical features is to bin the values so that continuous values are mapped to discrete

features. Another way of dealing with continuous values is to use a probability
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distribution to map the continuous values to discrete probabilities. A standard

way to deal with continuous values is to model them using a normal distribution

(also called a Gaussian distribution). This is a bell-shaped distribution with the

probability density function being:

p(x) =
1√

2πσ2
e−

1

2
(x−µ

σ
)2 (3.6)

A more accurate estimation as been shown using multiple Gaussian distribu-

tions with kernel estimates to map to probability values (John and Langley, 1995).

The kernel estimate p(x) is simply:

p(x) =
1

n

∑

g(

(

x − xi

σ

)

, 0, 1) (3.7)

The formula takes all the observed numerical features seen in the training and

calculates a multiple Gaussian. n is the number of training examples, xi is the ith

seen variable. We set µ to zero and σ to one to get a standard PDF which has some

nice algorithmic properties as in (John and Langley, 1995). Detailed information

can be found in (Hershkop and Stolfo, 2005b). A good survey of baysian machine

learning can be found in (Lewis, 1998).

3.1.4 N-Gram

When analyzing text, one alternative to using words as tokens is to take subse-

quences of the data and use these subsequences as tokens. The advantage is that

we do not need to define what the notion of a word is for us to analyze the text.

This is ideal for example where some foreign languages which use characters instead

of words.
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An N-gram represents the sequence of N adjacent characters or tokens that

appear in a document. We pass an N-character (or N-word) wide window through

the entire email body, one character (or word) at a time, and count the number

of occurrences of each distinct N-gram. For example for a 5-gram, the sequence

“Hello world” would be mapped to tokens: “Hello”, “ello “, “llo w”, “lo wo”, etc.

For email modeling, the algorithm works as follows. We count the number

of occurrences of each n-gram for each email; this may be viewed as a document

vector. Given a set of training emails, we use the arithmetic average of the document

vectors as the centroid for that set. For an unknown test email, we compute the

cosine distance (Damashek, 1995) against the centroid created for the training set.

If the cosine distance is 1, then the two documents are deemed identical. The

smaller the value of the cosine distance, the more different the two documents are.

Cosine distance is defined as:

D(x, y) =

J
∑

j=1

xjyj

(
J
∑

j=1

x2
j

J
∑

k=1

y2
k)

1

2

= cos θxy (3.8)

Here J is the total number of possible N-grams appearing in the training set

and the test email. x is the document vector for a test email, and y is the centroid

computed from the training set. xj represents the frequency of the jth n-gram (the

N-grams can be sorted uniquely) occurring in the test email. Similarly yk represents

the frequency of the kth N-gram of the centroid.
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3.1.5 Limited N-Gram

Tracking attachment behavior by studying its spread over time is one way to quan-

tify anomalous behavior (section 3.3). When studying large amounts of email data,

we would want to associate all messages or attachments that are similar to each

other in some way, in order to track edited documents over time or evolving mali-

cious attachments (e.g. polymorphic worm payloads). We can use an n-gram hash

of parts of the message to associate similar messages with each other. We adopt an

idea presented in (Manber, 1994) for approximating fingerprints. Instead of using

all n-grams generated by sliding a size n window across the content, we only use

those grams which have their last k bits set to zero. This translates into a large

reduction in the number of n-grams we need to consider, which considerably speeds

up the running time of the similarity test, at the expense of some accuracy.

3.1.6 Text Based Näıve Bayes

This algorithm uses a Näıve Bayes classifier based on simple word or token frequency

as described in (Mitchel, 1997). We calculate the probability of each token as seen

during training using a Näıve Bayes formula and assign a confidence score of the

predicted class. The predicted class is the maximum, and the score is a normalized

measure of confidence taken by dividing the maximum value by both values.

class,score = max











P (SPAM)
∏

P (wordi|SPAM)

P (NotSPAM)
∏

P (wordi|NotSPAM)
(3.9)

where the P (wordi|NotSPAM) is the näıve Bayes estimate as explained in

section 3.1.3.
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3.1.7 TF-IDF

The TF-IDF algorithm (Salton and McGill, 1986) used by (Segal and Kephart,

1999) is based on using a combination of the term frequency (TF) multiplied by

the inverse of the document frequency (IDF). Words that appear more frequent

should have a greater impact on prediction than words which appear infrequently.

We consider each email message (M), which contain token words (w). Each group

of emails denoted by F a folder, is represented by a weighted word frequency vector

W (F , w). To calculate the weights we must first calculate a frequency centroid F

over groups of messages (folders):

F (F , w) =
∑

M∈F

F (M, w) (3.10)

we now convert the folder centroid in the following manner. We calculate

the fractional frequency FF :

FF (F , w) =
F (F , w)

∑

w′ ∈ FF (F , w′)
(3.11)

now the term frequency is simply:

TF (F , w) =
FF (F , w)

FF (A, w)
(3.12)

where A is the set of all messages we are comparing. The document frequency

is the fraction of messages which have the word w appear at least once. So the

inverse document frequency used here is:

IDF (w) =
1

DF (w)2
(3.13)
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and we combine the two with:

W (F , w) = TF (F , w)× IDF (w) (3.14)

For unknown messages, we compute the centroid of the new message and

take a variation of the cosine distances between it and any centroid computed from

the training data to find its classification.

3.1.8 Biased Text Tokens

Recent work by Graham (Graham, 2002) on the task of spam detection has floated

the idea of a partial Näıve Bayes approach, biased towards low false positive rates.

The algorithm works as follows: We start with two training sets, spam and

good (non-spam). For each word token in each collection, we count the number of

times each word is seen, and store the spam counts in SC and good counts in GC.

For each token wi define:

x = min(1,
SC(wi)

Number of Spam Tokens
) (3.15)

y = min(1,
2 ∗ GC(wi)

Number of Good Tokens
) (3.16)

We can now calculate the weight of each token w:

W (w) = max(.01, min(.99,
x

x + y
)) (3.17)

The .01 and .99 allow the scores to be as close but not touching 0 or 1

when we do not have a clear score. The probability that a message M is spam is
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calculated as follows: for each wi ∈ M calculate W (wi) and sort them by distance

from 0.5 and combining fifteen of the most outlying scores in the following manner:

W (t1)W (t2) . . .W (t15)

(W (t1)W (t2) . . .W (t15)) + (1 − W (t1))(1 − W (t2)) . . . (1 − W (t15))
(3.18)

A threshold is used to determine if the new Message M is spam. We have

used the suggested 0.9 as a threshold.

3.2 Behavioral-based Models

To model email behavior we use specific features for specific tasks. In some models

we use a histogram to model the behavior of the user. A histogram represents the

distribution of items in a given population of samples. A more detailed description

is provided in section 3.4

We describe the algorithms used to compute email behavior models in the

following sections.

3.2.1 Sending Usage Model

The usage model computes the stationary behavior of usage of an individual email

account from an outgoing email point of view. The goal of this model is to quantify

what it means for an email user to use their account in a typical way so anomalies

can be detected.

When profiling email accounts based on an hourly division, every histogram

has 24 bins that represent the 24 hours of a day. Emails are allocated to different

bins, according to the time when they were sent. The value of each bin represents
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the daily average value of a given feature of the emails sent out in a specific period

of time. There are several features for profiling accounts including the number of

attachments, the size of emails, the number of recipients. This can be extended

and varied for the particular task.

An Aligned Histogram can also be used when comparing two different his-

tograms. The two histograms are compared by anchoring the comparison to time

bin 0. Anchoring the histograms allow us to compare real start times of an email

user’s 24-hour email usage period, as illustrated in the following example:

It may be the case that User A’s histogram shows no activity until hour i,

and User B (which might be A’s second account) may shows no activity until hour

j. Perhaps this is because User A is using a system in California and another system

in New York City at the same time, but emails sent at the same time on different

systems but analyzed together each may be associated with a different sent-time

because of the difference in time zones and computers. We allow disambiguation

by enabling the algorithm to anchor the histogram comparison to a single time bin.

Our approach to align histogram is as follows: we find the first non-zero bin

of a day starting from hour 0 (12 a.m.). If the bin for hour 0 has value 0, which may

occur if the user sends email late at night, we find the first non-zero bin which we

use as the starting bin. Zero-period intuitively indicates a period of time when the

user is inactive. From a histogram perspective, we treat four or more consecutive

bins with zero value as a zero-period. After ascertaining the new start time, we

wrap-around the rest of the histogram and use it for comparison. This provides

another means of detecting “similarity” among email accounts different than raw

histograms.
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Histogram comparison functions described in section 3.4 allow the algorithm

to choose a specific distance function. The comparison functions can be used to

compare behavior of an account’s recent behavior to the long term profile of that

account. As explained above, the histogram comparison functions also may be run

“unanchored”, meaning, the histograms are shifted to find the best alignment with

minimum distance, thus accounting for time zone changes.

Figure A.2 displays an example for one particular user account.

3.2.2 Similar User Model

In many cases, it would be useful to group email accounts into sets of similar

behaving users, for example for classification or finding alias accounts. It has been

found that some people maintain specific email accounts for either personal or

business purposes. In many cases, they will use both accounts at the same time,

and we would like to be able to find those two similar accounts.

The algorithm is designed to find a group of accounts that have a similar

usage behavior. We compute the histogram for each account and then find similar

users through comparison measurements. Different comparison methods are used,

some based on the distance between a pair of histograms, and others based on

statistical tests which will be explained in section 3.4.

When looking for similar accounts, a specific account is chosen as a pivot,

and we compute its own distance to all other accounts. Alternatively, we can cluster

accounts in a K-Nearest Neighbor fashion and return sets of similar accounts.
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3.2.3 User Clique Model

Another method to model outgoing behavior is to model the collection of recipients

in a single email as a set, and summarize these sets and their dynamics over time.

This information is used to detect abnormal emails that violate the user’s clique

behavior.

Formally, email communication can be captured by a directed graph G(V, E)

with the set of nodes, V , being individual email accounts. A directed edge, e12

exists if v1 sends an email to v2. Viewed in this way, cliques are a certain pattern

in this graph that we are trying to characterize and use as norms of communication

behavior.

The user clique model is best described in terms of item sets (see Figure 3.1).

An item set is a set of items associated with a transaction, such as a single purchase

at a supermarket. The goal of analyzing item sets is to extract useful association

rules of how items appear together (Holt and Chung, 2001). This problem has been

studied in the data mining and database community and is of great commercial

interest for its wide range of applications and potential predictive value that can

be derived.

In the context of mining email, an email can be viewed as a transaction

that involves multiple accounts, including a sender (in the FROM field) and recip-

ient(s) in the (TO, CC and, BCC fields). If we discover the rules governing the

co-appearance of these addresses, we could then use these rules to detect emails

that violate these patterns. Suspicious emails may then be examined further by

other models to confirm or deny that they are malicious.

The recipient list of a single email can be viewed as a clique associated with



CHAPTER 3. EMAIL MODELS 57

Figure 3.1: Three item sets from account U: [A, B, C], [B, C, D, E] and [D, E]. The
first two sets share two nodes and the last set is subsumed by the second set. The
resulting user cliques are [A, B, C] and [B, C, D, E].

the FROM account. However, using this set (or item set) directly is problematic

for two reasons. First, a single user account would contain a large number of

such sets and enumerating them for real-time reporting or detection tasks would

be undesirable if are trying to reduce the number of emails which will have to be

examined. Second, some of these sets are duplicates or subsets of one another and

it would be difficult to use them directly for any purpose. For these reasons, we

define a user clique as a set of recipients that cannot be subsumed by another set.

Thus, we compute the most frequent email item sets that are not subsumed by

another larger item set. Naturally, a single user will have a relatively small number

of user cliques. As an example, suppose a user has in his/her sent-folder four emails

with the following recipient lists: [A, B, C], [A, B, C], [A, B], and [A, B, D]. The

user cliques belonging to this user would be [A, B, C] and [A, B, D].
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A period of past history is needed to baseline the cliques. This bootstrapping

period can either be set to a fixed period or to just ignore clique behaviors until

sufficient data can be gathered.

A clique violation is defined as a message sent to a group inconsistent with

the user’s past clique behavior. An email sent from a user is regarded as inconsistent

with the user’s cliques if its recipient list is not a subset of any user cliques belonging

to that user.

The usefulness of this model depends not only on how quickly new groups of

recipients form over time but also on how it is combined with other models. That

is why this feature is combined with others as part of a profile (section 6.5). We

would also like to know the frequency of new clique formation to put violations in

context. Users with low frequency new cliques can be assured of a clique violation

more than a user who frequently engages in new cliques. Other models would have

to detect violation for such users.

We note that if a user ever sends a single broadcast email to everyone in their

address book (recipient collection), there would be only one user clique remaining

in the model for that user. This would render the model almost useless for virus

detection task because no clique violation is possible as long as a user does not

communicate with someone new. In practice, however, this scenario is highly un-

likely to happen. It has been shown that most of the time a user will send a single

email to less than 10% of the people in his address book (Stolfo et al., 2003c). For

an account with a small address book, a single email could cover 20%, 30% or an

even higher percentage of the address book. The probability of an email covering a

given range of percentages of an address book decreases quickly as the percentage
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range increases (Stolfo et al., 2003c).

3.2.4 VIP Communication Model

The VIP Communication model computes a behavior model describing which re-

lationships are relatively more important than others to a specific user. These

measurements are computed by comparing the average time it takes the user to

respond to different correspondents, and which correspondent the user responds to

fastest (i.e. the VIP). One may infer from this analysis the relative importance of

individuals to a specific user based upon the user’s response rate. Those to whom

the user may respond to more quickly are intuitively more likely to be important

to the user. This is one of many ways of measuring communication importance

between users.

Figure 3.2: The VIP model is used to estimate communication lag time, by normal-
izing the time between communication bursts. The upper figure shows the actual
communication flow, and the lower figure depicts the normalized flow.
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We consider the average communication time of account A to account B

as the average time elapsed between account A’s response to an email sent by

account B. However, in practice, it is difficult to compute this average time when

we consider the typical interruptions of the workday, such as work-time/off-time,

weekdays/weekends, meetings, vacations, etc.

Thus, we modify our definition of average communication time as a relative

average communication time. This model naturally lends itself to a real time sys-

tem. The algorithm works as follows; to calculate the VIP rank list for Account

A, we batch all of A’s incoming emails. As soon as A begins to respond, we reset

the time stamp on all batched emails and move them to a wait queue. This is

to compensate for off time by assuming all emails were received at the moment

that the user starts to reply emails. We next examine the wait queue, and for

any matching email recipients with whom A is now responding, we calculate the

length of time (of the reset timestamp) to our current reply, and use this to average

the communication time of account A to the specific account. This is graphically

illustrated in Figure 3.2.

3.2.5 Organizational Level Clique Model

We have presented models for profiling individual accounts. Now we present a

group behavior model. In order to study email flows between groups of users, EMT

computes a set of cliques in an email archive over some period of time. We want

to identify clusters or groups of related email accounts that participate with each

other in common email communications, and then use this information to identify

unusual email behavior that violates typical group behavior.
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For example, intuitively it is unlikely that a user will send a distinct message

to their spouse, their boss, their “drinking buddies” and their religious elders all

appearing together as recipients of the same message (whether delivered in one

email, or a series of emails) (Boyd et al., ). Of course this is possible, but it is

rather unlikely. (In those unlikely situations the model would not be a reliable

indicator for account behavior, discussed in chapter 4, in any case we would want

to flag that type of behavior as interesting.) A virus attacking a user’s address book

at random would not know these social relationships and the typical communication

pattern of the victim. Hence it would violate the users’ group behavior profile if

it propagated itself in violation of the user’s social cliques. The same of a forged

email: the sender would not know who else is typically cc’d in addition to the

recipient user. Studying communication flows between groups allows us to build

models of typical group interactions.

Clique violations may also indicate email security policy violations internal

to a secured enclave. For example, members of the legal department of a com-

pany might be expected to exchange many Word attachments containing patent

applications. It would be highly unusual, and probably unwise, if members of the

marketing department and HR services would likewise receive these attachments.

We can infer the composition of related groups by analyzing normal email flows to

compute the naturally occurring cliques, and use the learned cliques to alert when

emails violate that clique behavior.

Conceptually, two broad types of cliques can be extracted from user email

archives: user cliques (presented in section 3.2.3) and enclave cliques. In simple

terms, user cliques can be computed by analyzing the email history of only a single
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user account, while enclave cliques are social groups that emerge as a result of

analyzing traffic flows among a group of user accounts within an enclave.

For enclave cliques, we adopt the branch and bound algorithm described in

(Bron and Kerbosch, 1973). Our hierarchical algorithm locates the largest cliques

that are fully connected with a minimum number of emails per connection at least

equal to a specified parameter.

We start by counting the number of emails exchanged between any two

given users, regardless of the direction of the traffic flow. This absolute number

is compared to a set threshold. If the count is above the threshold, then the link

between the two underlying accounts is established. If the count is lower than

the threshold, then we assume there is no link between the two users. At this

point, we have a list of cliques of size 2. The 2 members in each clique are sorted

lexicographically, and the clique counts (number of communications) are sorted in

increasing order. We employ the hierarchical algorithm at this point and build lists

of cliques of size n, with n increasing by 1 at a time. Throughout the algorithm,

the list of cliques at level n is sorted, both among the sets of cliques, and within a

set.

The hierarchical algorithm is a repetitive process of building cliques one level

at a time. Given the current level, building the list on the next level is a two-step

process; the first step is to generate a candidate set and the second step is to remove

candidates that do not meet the clique definition.

The following example illustrates the building process. Assume that we are

currently at level 2 and want to construct a level 3 candidate list. We have AB,

AC, AD, BC, BD, CE on level 2.
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First, we take each clique and combine it with each one of the cliques further

down the list to form a candidate clique of size 3. This process has an outer loop

and an inner loop. We can immediately see that two cliques can be combined

only when they differ by one member. Furthermore, the member that is different

has to be in the last position of the cliques. For example to avoid duplicates, AB

and AC form a candidate clique, ABC. But AB and BC do not form ABC. The

reason behind it is that suppose ABC is a legitimate clique, we would have had

AB, AC, BC on level 2. Since the lists are sorted throughout, we would have had

encountered AB and AC before AB and BC, thereby obviating the need of forming

a candidate from them, which would result in a duplicate candidate anyway. Using

a similar logic, we can see that we can terminate the inner loop of combining the

current clique with another one further down the list as soon as we encounter a

clique, which differs from the current clique by more than 1 position.

Once the candidate list for a given level is generated, we examine each can-

didate individually to see if the constituted cliques of one less in size are legitimate

cliques. If so, the candidate is qualified. For example, to check if ABC is a qualified

clique, we need to check if each member in AB, AC, BC is a clique on level 2.

At the end of the hierarchical process, we have cliques of all sizes. We then

remove those that are subsets of another, leaving only maximal cliques at the end

of the process. This process can be optimized by constructing hash tables at each

level, with keys being the cliques. These hash tables also facilitate the process of

checking candidate sets.

Overall, the speed of this algorithm is the same as that of the Bron & Ker-

bosch algorithm (Bron and Kerbosch, 1973).
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3.2.6 URL Model

Another feature which can be extracted from email is a mathematical model of

the typical URL link. The URL model allows us to profile a typical URL link

found in a user’s email. By modeling the typical URL link in a class of email

we can differentiate between wanted and unwanted email links. The algorithm

was developed to compute distances between groups of universal resource locators

(URLs) found in sets of emails. For the spam detection domain, non-spam messages

will typically contain embedded URLs that are likely to be similar to each other

and different than those occurring in spam messages. We define a distance metric

between 2 URLs (x,y) as follows:

D(URLx, URLy) = scale ∗
(
ylen
∑

i=0

URLx[i] 6= URLy [i]) + URLxLength−URLyLength

2

URLxLength

(3.19)

where URLx is the longer URL and URL[i] is the ith character of the URL.

The distance is returned as a number between 0 and scale, with a smaller number

between two URLs translating into a closer relationship between the two URLs.

We also define 12 types of URLs: for example URLs can be found as image links

or more common HTTP links (see table 3.2.6.) The type of URL is added to the

final score as a base offset to differentiate between URL types.

For each email, we group the URLs into a single cluster. During training to

recognize a specific class of labels the clusters are formed in the following manner.

All URLs are extracted from a new training example to form a single cluster. We

then test this cluster against all available clusters to see if the average difference
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URL Types Sample
WEB www.????

ANCHOR <a href ??? > ... < /a >
FORM <form ??? < /form>
Email mailto:???
FTP ftp.???

JAVASCRIPT <javascript ???
Area <area ??? >

STYLESHEET <stylesheet ???
RELATED LINK <link ????>

IMAGE <img ??? >
GOPHER gopher://????

MISC Anything else

Table 3.1: Classes of URLs, the string ’???’ in the table represents some URL
pattern we are interested in matching.

is under some threshold. If it is, we just combine the two clusters. If it is not,

we create a new cluster with this set. Combining sets of URLs, allows the data

structure to keep counts of specific URLs, and a list of all URLs in a specific cluster.

During testing, we extract all the URLs from the test instance and treat

them as a single cluster. We calculate the minimum distance from this cluster of

URLs to any cluster from any target class observed during training. This is similar

to a K-nearest neighbor algorithm (Fix and Hodges, 1952). The minimum cluster

distance is then converted into a confidence score and outputted by the classifier.

The resulting score is a measure of how unusual or familiar a URL may be

in an email message given the user’s prior history of emails containing embedded

URLs. We note that when an email contains no links, we cannot use this model to

analyze it.
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3.3 Attachment Models

Another aspect of modeling email behavior is to look at the behavior of the email

attachments. The Malicious Email Filter (MEF) project is a malicious executable

filter that can detect malicious email attachments (Schultz et al., 2001a). It first

extracts byte sequence features from each labeled executable. These byte sequences

(similar to N-Grams) are then used by the algorithm to generate detection models.

This work was extended in the Malicious Email Tracking project to allow tracking

the flow of email attachments to detect malicious behavior, without specifically

knowing a priori that the attachments are malicious (Bhattacharyya et al., 2002).

By keeping track of specific features of an unknown attachment, an email system

can score the probability of a specific attachment being malicious (Schultz et al.,

2001b).

For any attachment we can quantify the flow through a network and calculate

global flows of the malicious attachments through the Internet, using a MET like

framework adopted to work on an offline email collection. In general, while MET

concentrated on malicious attachments, we also are interested in finding how specific

attachments behave within the email collection. We compute the following metrics

for each attachment of interest (others are possible):

Attachment Incident : the fraction of the total number of emails within the

email collection related to a particular attachment, starting from a single

point in time. Since each attachment is saved in the local repository with

a Unique ID and malicious or benign classification, this value is simply the

number of times each unique hash ID appears in the local repository.
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Birth rate : the rate at which an attachment is copied from one account to anther.

This value is calculated by determining the total number of email addresses

an attachment is sent to per minute. If this value is set to a specific threshold,

it can be used to determine whether or not an attachment is a self-replicating

attachment. Obviously, any time quanta can be implemented, and is best

determined by observing local email behavior. (We presume that a malicious

payload will not have access to these statistics in order to make its spread

behavior appear normal within the environment.)

Lifespan : the length of time an attachment is active. This value is calculated by

subtracting the first time an attachment is seen from its last occurrence in

the local repository. In malicious attachments this values reports the amount

of time an attachment was free to cause damage to a network before it was

detected.

Incident rate : the rate at which a specific attachment incidents occur in a given

population per unit time, normalized to the number of emails in our data set.

Death rate : the rate at which an attachment is detected. This is calculated by

taking the average lifespan of the attachment.

Prevalence : a measure of the total number of users which have been observed

receiving or sending a particular attachment. This value is calculated by

summing over the number users showing the same attachment.

Threat : the measure of how much of a possible danger an attachment may be.

One straightforward way to measure threat is to calculate the incident rate
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of an attachment added to the prevalence of the attachment divided by the

total number of unique email users and the total number of attachments.

Spread : a measure of the global birth rate of an attachment. This is calculated

by taking the average of the birth rates reported by the participating users

or organizations.

These metrics are directly implemented by computing SQL aggregates over

the databases (both local and organizational). Each time EMT determines that an

attachment is malicious, it files a report in the reporting facility (see section 5.4.8)

and Figure A.8.

3.4 Histogram Distance Metrics

As mentioned, EMT’s rich set of models includes explicit statistical models of user

behavior, some of which are represented by histograms. Histograms are compared

to one another to find similar behavior or abnormal behavior between different

accounts, and within the same account (between a long-term profile histogram,

and a recent, short-term histogram). The histogram comparison functions also

may be run “unanchored” or “aligned”, meaning the histograms are shifted to find

the best alignment with minimum distance, thus accounting for time zone changes.

Distance functions are used to measure histogram dissimilarity. For every

pair of histograms h1,h2 there is a corresponding number D(h1, h2) which indi-

cates the distance between h1 and h2. The distance should satisfy the following

requirement:

1. Identity: D(h1, h1) = 0
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2. Non-negativity: D(h1, h2) ≥ 0

3. Symmetry: D(h1, h2) = D(h2, h1)

4. Triangle Inequality: D(h1, h2) ≤ D(h1, h3) + D(h3, h2)

Usually, the values in the histograms must be normalized before one can

apply the distance functions. We utilized four distance functions: a simplified

histogram intersection (L1-form), a histogram Euclidean distance (L2-form), a his-

togram quadratic distance, and a histogram Mahalanobis distance. In addition we

present some statistical distance measurements.

3.4.0.1 L1-form (Simplified Histogram Intersection)

D1(h1, h2) =
n−1
∑

i=0

|h1[i] − h2[i]| (3.20)

The histograms h1, h2, are compared to one another. n is the number of bins

in the histogram. h1, h2 must first be normalized in order to make the F1-form

satisfy the above distance function requirements. We normalize the sum of the

histogram’s bins to 1 before computing their distance.

3.4.0.2 L2-form (Euclidean Distance)

Another distance metric is the Euclidean distance function.

D2(h1, h2) =

n−1
∑

i=0

(h1[i] − h2[i])
2 (3.21)

The L2-form is similar to the L1-form, but uses a second-degree function

(Chakravarti et al., 1967). L1 and L2-forms are straightforward, but they have

the following drawback. The individual components of the feature vectors, i.e., the
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bins of the histograms, are assumed to be independent of each other, something

not necessarily true in our environment, since behavior usually does not abruptly

change per bin.

3.4.0.3 Quadratic

We now describe the Quadratic distance metric from (Chakravarti et al., 1967).

D3(h1, h2) = (h1[i] − h2[i])
TA(h1[i] − h2[i]) (3.22)

This function considers the differences between different bins. A is a matrix,

and aij denotes the similarity between bin i and j. We set aij = aji (Symmetry),

and aii = 1.

We set: aij = |i − j| + 1, in other words we expect the behavior of the

email accounts to be more similar in adjacent hours. For example, the account’s

behavior between 9 a.m. and 10 a.m. should be more similar than that between

9 a.m. and 10 p.m. This is a very simple approximation but useful in smoothing

out the profile. This simplification can be further refined to take in another side

of the story, namely that the behavior between 11 a.m. and 2 p.m. (both work

times) may be more similar than those between 1 p.m. (lunch time) and 2 p.m.

(work time). One can also factor in work days and non work days (weekends) into

the equation. We note these other details, but have chosen a simple smoothing by

adjacent hours.
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3.4.0.4 Mahalanobis Distance

The Mahalanobis distance (Chakravarti et al., 1967) is a special case of the quadratic

distance equation mentioned in section 3.4.0.3. The formula is the same, but A is

computed differently. Here the matrix A is given by the inverse of the covariance

matrix obtained from a set of training histograms. We treat the elements in the

histogram vectors as random variables, H = [h0, h1, . . . , hn−1]. Covariance matrix

is B. bij = Cov(hi, hj). A = B−1. When they are statistically independent but

have unequal variance, matrix B is diagonal.

Let histogram h represent the user’s normal behavior, which is determined

from a training set, and let histogram h1 be some specific period that we wish to

test. In this distance metric, we make the assumption that the elements in the

histogram vectors are random variables and statistically independent. Thus, we

have the following formula:

D4(h1, h) = (h1 − h)T ×A(h1 − h) (3.23)

A = B−1, bii = Cov(h[i], h[i]) = V ar(h[i]) = σ2
i (3.24)

Covariance Matrix

B =



















σ2
0 0 · · · 0

0 σ2
1 · · · 0

...
...

. . . 0

0 · · · 0 σ2
n−1



















(3.25)

Thus we get:

D4(h1, h) =

n−1
∑

i=0

(
(h1[i] − h[i])2

σ2
i

) (3.26)
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h1 is the average number of a specific feature (emails or attachments etc.)

sent out in hour i during the observed training period, and σi describes the variance

around the arithmetic mean.

Starting with the basic Mahalanobis distance function, we modify it to a

weighted one. We first reduce the equation from the second-degree function to the

first-degree function, and then we give a weight to each bin so that the bins with

larger counts will contribute more to the final result:

D4(h1, h) =

n−1
∑

i=0

wi(h1[i] − h[i])

σi

(3.27)

Weight wi =
h1[i]

n−1
∑

j=0

h1[j]

(3.28)

3.4.0.5 Chi Square and KS

Methods from non-parametric statistics can be used to determine whether two ar-

bitrarily shaped, empirical distributions (including histograms) represent the same

distribution. We present two; chi-square (χ2) and the Kolmogorov-Smirnov (KS)

test.

The Chi Square test is designed, among other things, to compare two fre-

quency tables. Its formula is:

Q =
k

∑

i=1

χ(i) − np(i)

np(i)
(3.29)

where χ(i) is the number of observations for each recipient (i) in the testing

range, p(i) is the true frequency calculated from the training range, n is the number
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of observations in the testing range, and k is the number of recipients. There are

k − 1 degrees of freedom. The p-value of a Chi Square test is the probability that

the frequencies from both training and testing windows originate from the same

distribution. The number ranges from 1 to 0, where 1 indicates almost certainty

that the distributions are the same and 0 indicates that they are different.

The KS test is designed to test the hypothesis that a given dataset could

have been drawn from a given distribution (Chakravarti et al., 1967). It is based

on the empirical distribution function. The result is equal to the maximum differ-

ence between the cumulative distribution function of data points and the normal

distribution function.

DKS(h1, h2) = max
x⊆X

(|Fh1
(x) − Fh2

(x)|) (3.30)

Fh(x) =
n(x)

N
(3.31)

Here we can treat h1, h2 as the normal distribution function. N is the total

number of samples, and n(x) signifies the number of points less than x. x is ordered

from smallest to largest. The KS test is independent of arbitrary computational

choice such as bin width. It does not depend on the underlying cumulative distri-

bution function that is being tested. The KS test indicates how distant the two

distributions are.

3.4.0.6 Hellinger Distance

In statistics, the Hellinger distance is used to compare differences in frequencies, in

our case we can use this measurement to identify dynamics of user behavior over



CHAPTER 3. EMAIL MODELS 74

time by comparing recipient frequency histograms. A recipient frequency histogram

records the long term behavior of a user and the frequency with which they send

emails to particular individual recipients. (Interestingly, the rank order frequency

of recipients follows a Zipf-like distribution, i.e. a small population of users receive

the bulk of emails from an individual user, while a large number of recipients receive

very little email from that user.) We illustrate this graphically in figure A.5.

The Hellinger distance metric is defined as:

HD(f1[], f2[]) =

n−1
∑

i=0

(
√

f1[i] −
√

f2[i])
2

(3.32)

Where f1 is the array of frequencies for the training set, f2 represents the

array of frequencies for the testing set. This distance metric can also be used to

group similar frequencies as in (Lee and Shin, 1999).

3.4.1 Text Distances

For computing the distance between two textual features, we can leverage a variety

of distance formulas which we present in the following sections.

3.4.1.1 K-Nearest Neighbor

When computing textual distance we can compute the closest distance to a set

of precomputed clusters, or documents. The formula for weight adjusted nearest

neighbor algorithm (Han et al., 2001):

cos(X, Y, W ) =

∑

t∈T ((Xt × Wt) × (Yt × Wt))
√

∑

t∈T (Xt × Wt)
2 ×

√

∑

t∈T (Yt × Wt)
2

(3.33)
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given 2 documents X and Y , and a weight vector W . T is the set of tokens,

Xt and Yt are normalized token frequencies for token t in X and Y . Wt is the weight

of token t. Details are given in (Han et al., 2001) on optimizations that make this

model a useful tool for text categorization.

3.4.1.2 Centroid Cosine Distance

Given a set of training emails we extract the token frequencies and use the arith-

metic average of the document vectors as the centroid for each set. For an unknown

test message, we compute the cosine distance of this new example against each cen-

troid created during training. If the cosine distance is 1, then the two documents are

deemed identical. The smaller the value of the cosine distance, the more different

the two documents are. The formula for the cosine distance is:

D(x, y) =

J
∑

j=1

xjyj

(
J
∑

j=1

x2
j

K
∑

k=1

y2
k)

2

= cos θxy (3.34)

J is the total number of possible tokens which appear in the training set

and the test message. x is the document vector for the test email, and y is the

centroid for the training set. xj represents the frequency of the jth token. Similarly

yk represents the frequency of the kth token of the centroid.

Like the TF-IDF algorithm (section 3.1.7), the computed centroid is effec-

tively a vector of the highest occurring tokens. Centroid cosine allows us to cluster

a set of messages. To cluster we follow a simple algorithm:

1. Order all messages by some feature (size, date, etc). (Optional, but by group-

ing larger emails early on, we get a better running time to the algorithm).
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2. Compute the first message’s centroid.

3. Loop through all following messages; If a message is not part of any clus-

ter, calculate the distance and remove it if it has a distance less than some

threshold.

4. All messages removed on this loop form one group, and are marked with a

cluster group number. The number serves to differentiate between cluster

groups.

5. While unmarked messages left, GOTO 2.

Although the worst case behavior runs in n2 in practice the algorithm con-

verges much quicker.

3.4.1.3 Keyword Distance

In this algorithm, the distances are computed based on a keyword file. This keyword

file containing word tokens of interest can either be provided by the user or can be

computed based on a subset of messages, taking all the high/low frequency words

and forming a keyword file (Figure A.4).

We start with a set of documents (emails) to score. For each keyword, we

first compute the normalized document score, which normalizes the frequency to

both document length and per document frequency. That way, one email with

many occurrences of a specific keyword should be scored lower than an infrequent

keyword across multiple emails. The normalized score is assigned as the weight of

the specific keyword. We then compute a count per message, and sum the results.
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For example if the word “apple” has a weight of 5, and is found 3 times, we would

assign a score of 15 to the message.

Keyword distance measurements is one feature which can be used to cluster

a set of messages, clustering them on keyword scores, or ranges of scores.

3.4.1.4 Frequency Distributions Edit Distances

Another clustering method can be calculated by studying the character distribu-

tions in a group of messages. We compute a one-character frequency distribution

(1-Gram) reordering the 1-grams in ascending frequency. The ascending frequency

profile forms a Zipf like distribution, the same distribution that models the naturally

occurring frequency distribution of words or characters in natural language. We

are in effect creating a unique code sequence to identify a text segment (message).

Given two text segments, we can calculate the edit or Levenshtein distance(LD)

(Levenshtein, 1966). This is a measure of the similarity between two strings, the

distance is the number of deletions, insertions, or substitutions required to trans-

form one into the other.

3.5 System Models

The individual classifiers described in section 3.1 and algorithms described in section

5.3 are used as a basis for the combination classifiers described in Chapter 4. Each

classifier is used in supervised training to emit a class label and a confidence score.

In EMT (Chapter 5) the user has the means of specifying arbitrary class labels,

and choosing from a rich set of available features that are extracted from an email

archive.
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Chapter 4

Model Combination

In this chapter we describe a way of combining the disparate models described in

Chapter 3. We describe the various combination schemes, and a way of measuring

the benefit of using a combination scheme. Results of the different algorithms and

their combinations are presented in Chapter 8. Some of this has been published in

(Hershkop and Stolfo, 2005a).

4.1 Combining Knowledge

The goal of model combination is to leverage multiple learned experts over a given

task to improve individual model performance. We may be interested in reducing

errors, improving accuracy, or a combination of the two. In addition, by including

the input of many types of classifiers we can protect ourselves from risk of any one

classifier being compromised.

Many different studies have shown that combination classifiers either over

raw features or over classifier outputs are better than any single individual classifier
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in the group (Larkey and Croft, 1996; Kittler et al., 1998; Bilmes and Kirchhoff,

2000; Tax et al., 2000; Kittler and Alkoot, 2003; Tan and Jin, 2004; Zheng et al.,

2004). We now present an overview of some combination algorithms and specifically

illustrate them with examples in the spam detection domain.

For this discussion we will consider two different sets of assumptions.

• Binary Classification - We provide the discussion in the context of a binary

classification problem. For example in the email domain, the classifiers are

judging an unknown email on the probability that it is spam. In general we

are classifying an unknown example between a label and a target label. In

this case, “spam” is the target label.

• Output Score - In our work the models return a score in the range of 0-201

with larger numbers mapping to greater probability that an item being part

of the target label. We generalize this in this chapter to be on a range of 0 -

SR, with SR as the highest possible score. In Section 8.1.1 we will explain

how this is achieved, why 0 to 201, and how this can be generalized to n

classifiers.

4.2 Maximum & Minimum

For many of our classifiers, the score returned by an individual classifier reflects a

level of belief in the target label. In order to keep this mapping when combining

classifier scores, we can use the output of a classifier as the best answer. The simple

way to achieve this is when the combination algorithm calculates the probability

that the sample is part of the target label, we can choose the maximum individual
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score from any of the classifiers. The same for the reverse, when we calculate a low

probability of the target label, we return the minimum score.

In the evaluation section we display the results of combining classifiers with

and without min/max combination.

4.3 Simple Averaging (Equal Weights)

The simplest way of combining classifiers which requires no training knowledge, is

to average the combination of returned scores by the individual classifiers. This

has been shown to work well (Kittler and Alkoot, 2003; Kittler et al., 1998). We

call this an “Equal Weight Combination” since it assigns an equal weight to each

of the classifiers.

The main disadvantage of this algorithm is scaling. As the number of clas-

sifiers increase, the performance of average combination tends to peak, and can be

improved with a non-average-weighted algorithm. This is because the sum of the

errors of the individual classifiers has a cumulative effect of changing the correct

responses (Kittler and Alkoot, 2003).

In addition the algorithm makes a strong assumption that all the classifiers

are returning a smooth probability score. Smooth score is that for any individual

classifier, the larger the score, the greater the probability of being part of the target

label. Although classifier scores can be mapped to a smooth probability by learning

over training data, some algorithms do not necessarily return smooth probabilities.

For example, it might be the case, that a conservative classifier will return 115

(on scale 0-201) for many of the spam examples, although we expect most of the

examples to map higher on the score range. There are also classifiers which return
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a binary answer 0 or 201 which again does not map to a smooth probability curve.

4.4 Weighted Majority Algorithm

Another combination algorithm is a weighted majority algorithm adapted from

(Littlestone and Warmuth, 1989). Each of the individual classifiers is initially

assigned an equal weight vote.

During training, a threshold is learned for binary classification (correct or

not) and a tally of scores is computed with the majority vote as the predicted

classification. If the majority of the classifiers are correct no weights are updated.

If it is incorrect, the algorithm deducts a cost β from each of the classifiers which

contributed to the incorrect vote.

Modeled after the work in (Littlestone and Warmuth, 1989) we added a term

α to each weight of the correctly voting classifiers. Unlike the original algorithm, we

reward classifiers which had a correct vote when the overall majority were incorrect.

α was set to .001 and β = 4∗α with the threshold set to 60. We found these values

to work well with β during our tests over different sets of data.

For min/max smoothing, if the majority of weights are more confident that

the example is spam, we return the maximum available raw score produced by one

of the component classifiers. Conversely, if the weights are more confident that the

example is normal, we return the minimum available score.
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4.5 Näıve Bayes Combination

In the Näıve Bayes Combination algorithm we attempt to estimate the likelihood

of an individual classifier being correct for a given score.

We can estimate this by studying a classifier’s performance over a training

sample. Since ground truth is known, we can measure the error rate of the classifier

and its likelihood of being correct. This probability is estimated by mapping the

scores computed for the training data of the classifier to pre-defined bins over the

range of the raw scores. We use bins to allow us to cluster scores to achieve a high

statistical sampling and reduce the amount of computation.

The number of bins, n, is a parameter. For each bin (score range), we count

the number of true spam and number of true normal samples, while keeping a total

count of each class label seen in the training set. Then, we estimate:

P (S|C1C2 . . . Cn) = δP (S)P (C1|S) . . . P (Cn|S) (4.1)

where:

P (Ci, BINj|S) =
]Sj + 1

TOTAL SPAMj + ]BINS
(4.2)

for the particular bin j, we use a Laplace smoothing factor of 1
]BINS

, where

]BINS is the total number of bins. Ci is the ith classifier we are combining. The

P (Ci|NotSPAM) is calculated in a similar manner. The final score is returned in

the range 0 - SR by normalizing the estimated probability P (S), that the sample

S is spam. The normalization is computed as follows:

Score(S) = SR ∗ P (S)

P (S) + P (NotSPAM)
(4.3)
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4.6 Matrix Bayes

The Matrix Bayes algorithm attempts to closely model the probabilities of the

combination of returned scores. We do not assume statistical independence among

the classifiers, and thus sample the training examples using an n × n matrix (for

n = 2). Intuitively, we expect that if some of the classifiers return a high probability

of spam, and one does not, we can correct this particular combination by seeing

what the real label was during training and learning the probabilities. In addition

because we do not assume classifier independence we require a small number of bins

or much more data to train upon.

For example, if we set the bins to size 50 the range [0-201] will map to 5 bins

(0-49, 50-99, 100-149, 150-199, 200+). If we have 2 classifiers (n = 2), we compute

a single 5×5 matrix. If we see a score of 40 from the first classifier, and 30 from the

second, this will map to location (0, 0). The probability can be calculated during

testing by simply extracting values from the matrix seen during training in the

following manner:

Score(S) = SR ∗ 1 + Sij

Sij + ]NotSPAMij + ]BINS
(4.4)

where Sij is the number of Spam observed and recorded in the matrix location

(i, j). We use a Laplace smoothing factor of 1
]BINS

, where ]BINS is the total

number of bins (n2) we have chosen. We limit to n = 2 since as n increases the

data will be overly sparse.
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Figure 4.1: Score distribution for two classifiers, C1 and C2, and the centroids
resulting from creating bins. The color of the centroids represents a high probability
of spam (red) or low probability of spam (blue).

4.7 Centroid Based Models

Another way of estimating a probability distribution without direct binning is to

use a centroid based model to combine classifiers. This adopts well in general when

there is an issue of sparse data using direct binning. During the training phase,

a centroid is computed for each bin (if we have a sufficient amount of data above

some threshold). In cases where the centroid does not exist for a particular bin

(because of the training data is sparse i.e. insufficient date) the closest centroid

will act as a replacement for the void. Each centroid computed during training

is associated with a probability of some target class (spam and non-spam in the

binary label example). Figure 4.1 shows a score distribution for two classifiers C1
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and C2, along with the cluster points showing high probability centroids.

Figure 4.2: Using a nearest neighbor approach for calculating probabilities.

4.7.1 Nearest Neighbor

In the nearest neighbor algorithm, we use the closest centroid computed during

training to classify a new unknown example. In figure 4.2 we show how this works.

Notice that not every bin has a specific cluster and as expected from a smooth

probability output the (minx, miny) and (maxx, maxy) have the largest amounts

of data points.
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Figure 4.3: Triangulation of cluster points for calculating a probability score on the
probability slope.

4.7.2 Triangle Combination

An alternative to using a single centroid is to use a group of centroids in a prob-

abilistic framework. The triangle combination algorithm tries to triangulate an

unknown point treating it as a point on a probability surface created by mapping

n classifiers to an n dimensional probability space.

We illustrate this method using 2 classifiers. We map the two classifiers to

a n × n grid using the raw scores as coordinates.

To optimize the algorithm we bin the scores and compute the closest three

centroids (section 4.7) to form a triangle around the unknown point as in Figure

4.3.

The three centroids will be referred to as (x1, y1), (x2, y2), and (x3, y3) with

the unknown point (score to label) as (x, y). They form triangles around the un-

known point which we will refer to as A1, A2 and A3. A probability can be associated

with each of the centroids Z1, Z2 and Z3.
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We calculate the unknown probability in the following manner:

Z =
Z1A1

A
+

Z2A2

A
+

Z2A2

A
(4.5)

A is the total area of the triangle formed by the centroids. The areas can

be calculated by taking the determinant of the matrix with regard to point (x,y)

(Figure 4.3).
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4.8 Measuring Gains from Model Correlation

There are several ways to measure the performance of the classifier combination.

Zheng et al (Zheng et al., 2004) proposes a novel way based on the Data Envelope

Analysis (DEA) method. This analysis produces a measurement of how accurate

each classifier is in correctly classifying examples. This is different than ROC con-

vex hull measurements proposed by Provost and Fawcett in (Provost and Fawcett,

2000).

Both methods make some strong assumptions about the performance of the

underlying classifiers. For example they concentrate on combining the best classi-

fiers, trying to measure what best means. We show how even weak classifiers can

be combined in our context of computing a model correlation function.

We introduce a new way to measure the gain in the context of this two class

problem, i.e. spam classifiers. If we were to calculate the maximum gain from any
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classifier we could measure a relative gain in comparison with this maximum. We

call this empirically measured maximum possible gain the Judge Combination.

4.8.1 Judge Combination

One of the current methods for measuring the gain of combining models is to have

the training set split into many parts and measure the performance gains over each

part and averaging the results. The theory is that one can generalize enough about

the performance over the training set to accurately predict the performance gains

for the testing set (Ho et al., 1994; Kittler et al., 1998).

We approach the problem from a different angle: we start with a simple ques-

tion, how accurate is a combination of classifiers if we only combine the minimum

or maximum available raw scores from the component classifiers in the correlation

function (essentially ignoring lower scores otherwise) knowing the correct label?

Surprisingly, the answer is very accurate! We call the algorithm the Judge

Combination. Given that we know the correct classification of an email used to train

the classifiers, we return the maximum available score if it is spam and minimum

if it is not spam. That is we aim to learn when to choose the maximum available

score and when to choose the minimum score from any of the classifiers we are

combining. This contrasts with the typical approach of trying to create a super

classifier using the individual classifiers as inputs for a combination score.

The accuracy achieved by this combination method, is used as the theoretical

limit of a possible combination algorithm and we scale all our gain results based on

this accuracy estimate.
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4.8.2 Gain formula

We define the gain as a measurement of how much accuracy potential a classifier

has reached. This measurement can be used to decide which combination algorithm

to use in a system.

classifier gain =
10000
∑

i=0

(10000 − i)

10000
× FPi (4.7)

where FPi is the measured false positive rate of the classifier over its train-

ing data. i is varied by 10,000 to allow two decimal precision for measuring the

false positive rates from 0 to 100. This is simply the area under the ROC curve,

biased towards lower false positive values, that is, we weigh lower false positive with

greater weights. We can calculate the FPi by moving a threshold over the data

and calculating an ROC curve, and then averaging the results between points to

interpolate the graph.

Since the Judge algorithm represents a maximum possible combination score

achievable, we use it to scale the gain score for each individual classifier as follows:

gain =
classifier gain

Judge gain
(4.8)

This provides an easy reference point of measuring different combinations

in relation to the judge combination. We can now measure the performance of

individual and combination classifiers in relation to each other. This allows us

to decide between two combination algorithms that might visually be hard to tell

apart, but measure differently in relation to each other’s gain scores.
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Chapter 5

Email Mining Toolkit

In this chapter we detail the Columbia University’s Email Mining Toolkit (EMT).

We have documented parts of it in various publications and now present it in its

entirety in this chapter. It has been under development since June 2002 and is

approximately 60,000 lines of source code implemented in Java. It was initially

designed as a learning tool, to illustrate the power of behavior models. As such it

contains much more than just the basic email analysis, but also database, reporting,

and forensic tools all joined under a data mining framework.

EMT is architectured to be a standalone application for offline email analy-

sis. We have implemented behavioral models to allow behavior analysis to take

place in an organized and task-driven environment. Each window allows a user

to study a certain aspect of the email behavior with the ’message’ window,’flow’

window, and ’forensic’ window tying different models together.
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5.1 Architecture

EMT’s architecture is composed of four major components.

Parser - A parser which serves to import the email data. This tool is responsible

for taking any email data format and importing it into the EMT database.

The parser is described in section 5.1.1 and appendix B.

Database - An underlying database to store the email messages. In section 5.2.1

we describe the schema and rationale in detail. This component is where the

actual email data resides for analysis by the models.

Models - A set of Information retrieval and behavioral models. The models which

were described in chapter 3 form the basis for the mining toolkit. We describe

the implementation and user interfaces in this chapter.

GUI - A front-end Graphical User Interface (GUI), which allows the data and

models to be manipulated. It also allows the user to test a range of parameters

for each model in the offline system, so they can accurately judge what are

the ideal parameters for a specific set of email data.

5.1.1 Mail Parser

The EMT parser is designed to read data from an email collection and import it

to the EMT database. We specify an API interface which can be implemented to

any email data representation. This allows EMT to analyze any source of email

and apply its behavior modeling over an EMT database. Appendix B has a more

in depth detail of the parser and our implementation.
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Figure 5.1: The EMT Architecture composed of a email parser, data base back-end,
set of models, and a GUI front-end.

Note that the parser is a stand-alone application but incorporated into the

EMT GUI framework for convenience. The GUI allows the parser to be used

without invoking a separate command window.

5.2 Database

To improve on a simple flat file organization used by most email systems, we have

implemented a database configuration to store the email messages. A database

format allows us to quickly and efficiently store and retrieve individual and group

messages. In addition it allows compact representation and quick statistical lookups

to take place. It also builds upon current database technology for portability and

rollback features.
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We have made specific trade-offs between space and computation consider-

ation in the design of the EMT database schema. We allowed data redundancy

where computation would benefit, because space is currently far cheaper than com-

putation time. Specifically many of the statistical features exist in more than one

form in the database and index keys, but are part of the design of the system.

In addition some of the data redundancy is to allow us to operate in “privatized”

mode, allowing the actual data to be encoded for privacy while allowing meaningful

statistics to be computed.

5.2.1 Schema

The Schema for storing email messages shown in Figure 5.2 in EMT consists of

three main tables:

Email Table -

The email table is the primary collection of information about an email mes-

sage. Its schema is presented in Figure 5.2. Information about the sender,

recipient, date, and time are stored.

When a single email has many recipients, the table inserts a row for each

recipient (as if the email were viewed by a distinct sender/recipient pair). The

reason for this is that, conceptually, there is no difference between sending

an email to many people at once and sending it to each person individually.

The only difference is an administrative one, in the column titled “number

of recipients” (this is the numrcpt field in database schema). It also allows

many of the statistical computations to run faster, since we do not need
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Figure 5.2: The EMT schema consisting of email, message, and keyword tables. PK
is the primary key for a specific table, while FK is a foreign key in the database.
Fields in bold represent indexed columns.
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to recompute specific statistics when we are interested in specific users or

communication patterns.

Each email has two unique identifiers in the schema. Each row in the table has

a unique field that indicates the email’s unique identification number (UID).

In addition, each processed email has a unique mailref, although a few emails

may share a single mailref if they were on the original email’s “to” or “cc”

list.

Notice that some information seems at first glance to be redundant. For

example, why keep both the user full email and the email up until the “@”

sign in two columns? The reason is that EMT is configured for privacy as

described in Appendix B and when the data is scrambled in the database, this

is the only way to maintain user statistics without revealing the actual user

during analysis. This mode of privacy also allows the parser to gather email

data in many locations (hashed), and then merge many small EMT databases

into one large one without compromising the original email information‘.

We now describe each column in detail.

uid - A unique identification number for each row. This is mainly for data-

base and insert statistics purposes.

sender - The full email name of the sender.

sname - The first part of the email name up until the ’@’ character.

sdom - The last part of the email name after the ’@’ character.

szn - The email zone of anything after the last period after the ’@’ character.

For example .com, .edu etc
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rcpt - The full email name of the recipient.

rname - The first part of the email name up until the ’@’ character.

rdom - The last part of the email name after the ’@’ character.

rzn - The email zone of anything after the last period after the ’@’ character.

For example .com, .edu etc

numrcpt - The number of recipients.

numattach - The number of attachments

size - The size of the entire email.

mailref - A unique string to identify the email based on the hash, internal

id. We append the folder name if not long enough.

xmailer - The mail client id string.

dates - An SQL formated date such as 0000-00-00

times - An SQL formated time such as 00:00:00

flags - A string representation of the flags in the email such as x-header

information.

msghash - A md5sum hash of the entire email.

rplyto - The reply to email name if present.

forward - The forward flags.

type - MIME type of the message.

recnt - The number of ’re’, ’re:’ removed from subject line beginning.

subject - The cleaned up subject line.
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timeadj - Time zone adjuster.

folder - File or folder name of the message.

utime - Unix time stamp of the date, a long type.

senderLoc - character representing sender source (Internal/External).

rcptLoc - character representing recipient source (Internal/External).

recpath - Full received path string.

class - One character representation of class label (Spam,Virus,Interesting,Not

interesting,Unknown).

score - Either a user assigned score or learned score associated with the

email, which we might want to store.

groups - Group id number.

ghour - The hour as an int.

gmonth - The month as an int.

gyear - The year as an int.

Message Table -

The message table contains information about the email’s contents, including

any attachments to the email. Attachments are represented by the md5 sum

hash, which is based on the contents of the attachments. If more than one

attachment is inserted into a single email, then each attachment is represented

on a separate data row. Secondary information includes the path information

and the first x bytes of the body. In addition to its unique hash, a message
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part (body or attachment) is associated with a message mailref and message

hash.

We now describe each column in detail.

mailref - A unique id for each email.

type - The mime type of the message part. This is not necessarily the same

as the type found in the email table. For example, an email might be

labeled “MIME multi-part” and have binary attachments and others.

hash - A unique hash of the message part.

received - The entire received line.

size - The size of the attachment part.

msghash - A hash of the entire message.

body - The full body of the attachment in binary format.

filename - The filename (if any) associated with the attachment.

Keyword Table -

The Kwords table collects keyword statistics about the content of an email.

If a keyword file is used, then the table notes the frequency of keywords and

updates the database.

We use this table as a fast updated cache when keyword functionality is

enabled during EMT operations. By storing high or low frequency keywords

associated with each email, we can compute group cluster more efficiently.
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5.2.2 Implementation Details

EMT uses two types of databases. The first type is a Mysql database running either

locally or remotely, and the second type is an open source Java based database

technology called Derby. Because of the way both databases are wrapped, they

look identical to the components of the system.

Mysql is an open source, platform dependent database (MYSQL, 2005). The

main advantage to this option is that the database is written in machine native

code which translates into quicker running time. The drawback of Mysql is that it

requires user setup and configuration, and if not performed correctly hinders EMT

from running because of permission errors. In addition to being machine portable,

we need to download or provide a machine executable binary of Mysql for each

operating system. When running large sets of data experiments, Mysql is a better

choice.

Derby is an open source database technology that advertises itself to be pure

Java, easy to use, small footprint, standards based, and secure (Derby, 2005). Derby

is based on the former cloudscape database technology donated by IBM in 2004 to

the Apache Foundation. It is a stand-alone platform-independent, Java application

which we bundle with EMT. The advantage is that the user does not need to install

any outside components. The drawback is that the current performance is a little

slower than that which is provided by Mysql. We have found, when the number of

email analyzed to be very large (> 2 gig of data, 300,000 emails) the performance

differences were noticeable but not considerably so.
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5.2.3 Database Example

We illustrate the workings of the database by providing an example of how an

email would be divided among the different database tables. If user A sends an

email “TTT” to both user B and User C, the email table would have two entries:

(A, B) and (A, C) both referencing msghash (message hash) of TTT. In addition

each email is referenced by a unique mailref string.

The Message table would have one entry for the msghash of TTT, if TTT

had multiple parts. Each part would generate one entry in the Message table. For

example, if TTT is composed of parts 111 and 222, then each part would have a

unique entry in the message table but still be associated with TTT’s mailref and

msghash (TTT,111) and (TTT,222).

When retrieving a message in EMT we can recompose the message by creat-

ing joins on the database table using the mailref as a key to link both sets of tables.

The reason is to allow for example when one user repeatably sends a specific ex-

act message multiple times, to reside only once in the database. This can happen

when for example resending important documents, reminders, and advertisement

messages.

5.3 Models

Each of the EMT models addresses a different part of a user’s behavioral analysis.

We described general models in Chapter 3. We will refer to specific models when

describing specific GUI modules in section 5.4.

Because EMT was designed to analyze a user’s email, we leverage specific
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models for either incoming or outgoing analysis. For modeling outgoing behavior,

we use the usage, similar, and clique models. For incoming behavior, we use the

communication, attachment, and URL models. Because data might be richer in one

direction over another when analyzing user-specific data, we make these distinctions

over which model is for what email direction. For example, naturally we usually

have more precise data to compare users when we look at their outgoing behavior

(how they send emails) rather than incoming behavior (when they receive email).

This of course is highly dependent on the email archive data retention, as the models

can in reality be used in either direction. From our experience, some users will keep

all mail sent and received, while others only keep either outgoing or incoming emails.

5.4 EMT GUI

The GUI provides a front-end to users to use the data mining system. Each of

the different components is divided among data gathering, viewing and computing.

The “Gathering” function includes the parser and database related views which are

related to acquiring email data. The “Computing” functions are those sections of

EMT which allow different types of machine learning and behavioral models to be

computed and tested against the underlying data and to experiment with different

parameter settings. The “Viewing” elements are where specific model parameters

can be tested and results analyzed by an analyst.
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5.4.1 Message Window

The Message window offers a particular view of the data in the database (Figure

A.1). A view is composed of a set of constraints defined over the data. For example

it can be all messages associated with a particular folder or user.

The following features can all be used alone or in combination to constrain

the data view.

1. Date - All messages between a set of dates.

2. User, Direction - We can choose a specific user to view all their email, and

also define which direction (inbound, outbound, or both) we would like to

view.

3. Label - We can view specific emails, such as spam or virus.

4. SQL - An SQL statement can be defined to specifically choose a subset of the

data. This allows users to extend the schema and use those extensions within

the EMT framework.

Views exist to allow the system to scale to arbitrarily large amounts of mes-

sages without taking over all of the system resources. The message window also

allows old views to be viewed by using a back and forth button near the top of the

GUI.

In addition the message view allows machine learned model creation and

evaluation. Individual or groups of messages can be labeled, and processed by

any of the machine learning classifiers to create a model and saved for later use.

Models can be loaded, and evaluated over a given view, to label or score a group

of messages.
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5.4.2 Attachment Statistics

Figure A.8 displays the attachment statistics window which allows analysis of at-

tachment behavior. The Email attachments can be grouped by name, size, or

content. MET Models (Bhattacharyya et al., 2002) can be run over all the data,

and alerts issued for any attachment violating the MET measurements. These

features and measurements are described in section 3.3.

Attachment statistics can be viewed, saved, or selected for further analysis.

In addition the user can group similar attachments either by similar name or similar

content (using N-gram distance).

5.4.3 Similar Users

The Similar users window (Figure A.3) is designed to find a group of email accounts

that have similar usage behaviors with any selected account. It can also be used to

view the usage histogram of different metrics of the email accounts.

A specific selected user can be compared to all others, or only those accounts

which have issued emails. The difference is that for source emails, we have better

statistics than those users which appear exclusively as recipients.

The histogram comparisons can be either normal or aligned (section 3.4).

There are four features used to find similarity; the average number of emails sent out

per hour; the average size of emails sent out per hour (in KB); the average number

of attachments of emails sent out per hour; and the average number of recipients of

emails sent out per hour. In addition there are four comparison functions available;

L1-form, L2-form, Quadratic, and KS-test.

The window displays the results of the comparison as an ordered list of



CHAPTER 5. EMAIL MINING TOOLKIT 104

similar users, and a set of histograms associated with each similar user. It allows

an exploration of related accounts, when analyzing large email sets.

5.4.4 Usage Profile

The Usage Histogram window compares an email account’s behavior over time

(Figure A.2). A profile period or training period is selected (example: first 75%)

and this profile period is compared to a test period known as recent period. The

default behavior is to compare the last month as the profile and last week as the

recent.

Either a specific account or all accounts can be checked in an automatic

fashion. For those accounts whose recent period is anomalous (in a histogram

sense) above a certain threshold, an alert is issued. The distance method used

here is the Mahalanobis distance function, which is described in section 3.4.0.4.

According to the distance and the alert level specified the system judges whether

the recent behavior is normal, abnormal, or might be abnormal. These judgments

are indicated by different colors: red for abnormal behavior alert, yellow for might

be abnormal alert, and blue for normal behavior. If the behavior is abnormal or

might be abnormal, the alert is sent to the whole system’s alert log (section 5.4.8)

for further analysis by a forensic expert.

5.4.5 Recipient Frequency

The Recipient Frequency window models email flows from an individual email ac-

count. It analyzes the frequency at which the selected user sends email message to

each recipient.
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We analyze either only emails sent by the user (out-bound), only the ones

received by the user (in-bound), or only the ones sent with an attachment (out-

bound with attachment).

The chart in the upper left side of figure A.5, called the Recipient Frequency

Histogram, plots a bar graph indicating the frequency of each recipient to whom

the selected user has ever sent an email. The table in the upper right side, called

the Recipient List, displays the email address of each recipient along with the

corresponding frequency of received emails from the selected user. This table is

sorted is descending order, and each of its rows corresponds to a bar on the Recipient

Frequency Histogram.

The chart on the lower left side of figure A.5 is the Total Recipient Address

List Size over Time chart. By “address list”, we mean all recipients who have

received an email from the selected user between the two selected dates. Here, the

chart plots the address list size, i.e. the number of recipients in the address list,

over time. It starts at zero at the beginning of the dataset and grows as the selected

user sends more emails to new recipients not already listed.

The chart in the lower right side of figure A.5 is shows the number of distinct

rcpt and the number of attach per email blocks chart. It displays three variability

metrics and the rolling averages of each of them.

We calculate and display the results of the Hellinger distance (section 3.4.0.6)

over recipient frequency email activities. In addition there is a Chi Square window

which compares the selected user’s profile between two time frames (recent vs pro-

file). The degrees of freedom and the p-value of the Chi-square test, as well as the

Kolmogorov-Smirnov distance, are displayed at the bottom of the window.
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Analysis of activity in relation to cliques can be done by first calculating the

cliques and then running a Chi-square test in a sub-window. Cliques are groupings

of users with large pair-wise email flows, thus representing tightly connected small

groups of email users. The results are displayed in a table grouping users into

cliques and displaying group statistical behaviors.

5.4.6 Cliques

To study email flows between groups of users, we compute a set of cliques in an

email archive. We seek to identify clusters or groups of related email accounts that

participate with each other in common email communications. Conceptually, two

broad types of cliques can be extracted from user email archives: user cliques and

enclave cliques. In simple terms, user cliques can be inferred by looking at email

history of only a single user account, while enclave cliques are social groups that

emerge as a result of analyzing traffic flows among a group of user accounts. We

display enclave cliques in a tabular as well as a graphical form seen in Figures A.6

and A.7.

5.4.6.1 Enclave Cliques

A clique is a group of accounts that, pair-wise, have exchanged some minimal

number of messages. To find cliques in the dataset, set the minimum message

threshold on the top of the screen, and click Refresh Users. If you set the threshold

to 30, for example, each pair of accounts in the clique will have exchanged at least

30 messages, perhaps 13 in one direction and 17 in the other. The results will also

show the most common subject words for messages exchanged within each clique
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group (Figure A.6).

5.4.6.2 User Cliques

We define a user clique as a group of individual mail accounts related by some

common set of communication and involving at least k emails. For example, if

User X sends emails to A, B, and C, at least k times, then we can say that A, B,

C form a clique with respect to user X. In this definition, a clique consists of two

or more users.

The threshold box specifies the k value. The training period refers to the

time frame necessary to learn the user’s cliques. The testing period refers to the

time needed to test the learned cliques. These can be changed in order to study the

behavior of an individual over time with respect to his or her cliques. The Clique

Sets button shows the cliques generated from the training period. The Clique

Violation button shows the cliques that were seen in the testing period but not

seen in the training period.

When results are displayed, additional information is available on a per clique

basis. The first column shows the number of times that the clique was observed.

The weight column computes the weight of the users in the cliques. Then, the

actual clique is shown.

A graphical representation of the users email over time is displayed for each

user. This enables a visualization of how the training and testing sets are related

(see figure A.9).
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5.4.6.3 Graphic Cliques

The graphic cliques window displays a graphic representation of the clique groups.

It allows the user to navigate and choose a specific clique to analyze in-depth by

choosing specific constraints on the clique building algorithm. The graph uses poly-

gons and lines to overview the results of the cliques relationships. Different shapes

and colors are used to emphasize different aspects of cliques and their relationships.

Different parameters are user adjusted for selecting clique formation. EMT

utilizes two different algorithms to calculate clique, With or Without Keyword

(Common Subject Words). Minimum amount of connections is a threshold chosen

by the user to define the minimum number of emails exchanged between cliques to

be considered in the analysis.

The window display is divided among three panels. These panels, the Infor-

mation Board, the Clique panel, and the User panel, are shown in Figure A.7 and

are described below.

Clique panel :

This panel displays results for all of the cliques that have met the user specified

constraints. Each dot on the graph represents a clique (not an email account)

with an associated reference number. The different sizes and shapes of the

dots indicates different types of cliques. Circles indicate 2-clique, triangles

indicate 3-clique, squares indicate 4-clique, and so on.

The lines portray the connection (i.e. the relationship) between cliques. A

line connecting two dots signifies that these two cliques share the same email

account(s) (i.e. clique members). The color of the lines represents the per-
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Color Percentage
Orange < 10%
Yellow > 10%, <= 20%
Red > 20%, <= 30%
Cyan > 30%, <= 40%
Blue > 40%, <= 50%

Magenta > 50%, <= 60%
Green > 60%, <= 70%
Gray > 70%, <= 80%
Pink > 80%, <= 90%
Black > 90%

Table 5.1: Alert Color percentage values.

centage of members that the two cliques share. The table below defines which

percentage is associated with which color. For example, a red line between

two dots means that these two cliques share 30% of their clique members.

This is presented in Table 5.1.

User Panel :

This graph displays all of the email accounts. The blue dots represent cliques;

they are the same as the dots in the Clique panel, The dots use the same

identifying reference number as in the Clique graph; each number indicates a

particular clique.

Black dots represent all of the email accounts. The leftmost column of black

dots indicates that each of these email accounts is involved with only one

clique. The second left column indicates that each of these email accounts is

involved with two cliques, etc. The rightmost dot(s) (i.e. email accounts) are

involved with the most number of cliques. Thus, EMT displays which email
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account(s) is involved with the greatest number of cliques on the far right.

The colored lines indicate connections between email accounts and cliques.

A line connects an account with a clique thus showing that the account is

in this particular clique. A clique may contain more than one account, and

an account may be involved in more than one clique. Different columns use

different colors.

Information Board :

The Information Board enables further analysis on the cliques. When a dot

(clique) is chosen, the Information panel is updated with the email account(s)

and “Common Subject Words” associated with this clique. It generates a

small picture showing what a clique looks like. In addition, in the Clique

panel the selected dot turns red (the others remain blue). In the User panel,

the selected clique and its email accounts also turn red. To see which email

account(s) that two cliques share, the user can choose the connecting line and

the information board now displays information about the shared accounts,

and the selected lines becomes black.

5.4.7 Email Flow

The Email Flow window (Figure A.10) portrays how a message permeates through

an organization and shows how people relate to each other with a message flow

containing the same content (via ngram analysis) as the original target message

(chosen by the user). The flow starts at an individual email message, groups other

emails either by subject or by content that have similar content, finds all the relative
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or similar emails and shows details such as the relationship of senders and recipients,

content and time.

We can visualize the flow of a message and easily find cliques between the

email accounts by this graph. Thus, the flow pattern indicated by nodes (email

accounts) and arcs (message exchanges between accounts) define interesting “con-

tent based cliques” within an organization. The graphical display shows a series of

concentric rings. The inner most ring and node corresponds to the original target

email. Time is depicted by stepping outward ring by ring. The nodes in the next

closest ring are accounts that have exchanged email in the next time step. The

spread and number of arcs and nodes provides a view of how an individual message

affected communication over a broad set of email accounts and the time frame that

this spread occurred. The lower left panel in Figure A.10, is a table form of the

graphical representation on the lower right.

5.4.8 Forensics and Alerts

Email forensics have played an important role in various litigation and investigation

proceedings. Many organizations by law are required to retain all email that passes

through their systems. Large organizations might have many email servers, in many

locations generating large amounts of data. In cases of litigation or investigation

a specific subset of the email data is required. In many cases the organization is

most interested in complying without releasing too much or too little information.

Figure A.11 displays the EMT forensic view. First a set of emails is chosen

to analyze. The emails can be grouped by similarity to aid in the finding interest-

ing emails. A specific email can be selected and their usage history and VIP list
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generated. A specific recipient can be selected from the VIP list and the interaction

between the main user and VIP user can be displayed as a message view, in the

message window. In addition the main user can be studied in any of the other

EMT windows.

This window also includes a reporting mechanism for organizing, displaying,

archiving, and analyzing alerts from the various parts of EMT. This is highlighted

in Figure A.12.

A forensic investigator working with an unknown set of emails, can use the

EMT system to locate either accounts of set of messages to investigate. Interesting

email accounts can be automatically selected based on a subset of behavioral mod-

els within EMT. For example, using the histogram models, one can locate email

accounts which are behaving anomalous over a specific period of time based on

past usages. Once an email account is located, its cliques and VIP accounts can

be computed to aid in find other sets of email accounts to investigate. In addition,

a subset of all the messages can be isolated by studying the communication flows

and locating anomalous patterns.
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Chapter 6

PET

EMT was initially designed as a learning tool, to illustrate the power of behavior

models. We have packaged the integral portion of EMT into a package we call

PET with the specific aim of making it easily integrated into any standard email

environment through plug-ins.

6.1 PET

The Profiling Email Toolkit (PET) is designed to allow the user to view messages

within context by automatically modeling past behavior information. For example

when multiple messages arrive at the same time, the user is presented with the mes-

sages sorted by relevance. The relevance of a specific message can be computed by

observing past behavior of the user with regards to equivalent or similar messages.

User behavior models can be used in this context to provide message meta-data

relevance scoring. In addition, different than the current available tools (Itskevitch,

; Pazzani, 2000; Segal and Kephart, 1999; Segal and Kephart, 2000; Winiwarter,
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1999; Lewis and Knowles, 1997), it can not only suggest relevant folders but also

offer additional information such as a score of message importance, suggested ac-

tions, past email flow (contextual), and related emails (references and follow-ups).

Related emails would be either similar in structure or similar in behavior. Simi-

lar to credit card users, email users can be broadly classified into sets of similar

users based on comparison functions or distance formulas applied to user profiles

as discussed earlier.

Figure 6.1: The PET Architecture.

Message view organization described in section 5.4.1 is one example of how

to allow users to customize their email experience. Studies have shown that not

all users treat email the same way (Ducheneaut and Bellotti, 2001; Whittaker and

Sidner, 1996). For example, a doctor monitoring patients through email would

appreciate an automatic system alerting to the presence of a message of utmost

importance. Behavior modeling or simple similarity content test would be able to

accomplish this task. Currently most users rely on hard coded rules based on a

pattern in the subject line to flag messages. These are susceptible to false alerts by
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spam messages.

No current client system which we are aware of offers an integrated set of

behavior modeling features; in this chapter, we aim to demonstrate the power and

utility of behavior-based modeling packaged in an easy to use deployable system.

We now describe the PET system, a packaged toolkit for building and using be-

havior models.

6.2 Architecture

The email system consists of a set of servers and a user-side client reader, which

performs the usual fetching, displaying, composing, and retrieval of email data.

Examples such as Mozilla Thunderbird, Lotus Notes, Outlook, or Outlook Express

are all typical email clients. The PET system integrates within the current email

framework and consists of two components.

The first is the email storage component, which can replace or complement

current client capabilities. EMT currently implements a database scheme for email

stores. We use this implementation in our design. The actual data is stored in a

relational database making relationship queries a natural way of organizing the

data. By utilizing data base components, backups and verification of the data can

be easily implemented and used within current email clients.

The second part of the system is the PET models section. This part takes

as input an email message and updates the various models and computes feature

measurements for each type of profile. In addition, it provides support of the

enhanced search capabilities added to the client. This section also contains the

logic to combine multiple profiles. The output of this section can either be logged
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or is sent to a display widget on the email client.

We have interfaced to the Mozilla Thunderbird email client (Mozilla Foun-

dation, 2005) but in theory any client side plug-in can be written to visually display

the model output on the client side environment.

6.3 Requirements

We outline a number of requirements we impose on the PET system. The system

should work within the current framework of protocols and should not alter what

we perceive as underpinnings of the success of email; low computational cost, ease

of use, trust, compatibility, and portability. We now list the requirements in detail.

6.3.1 Computation Cost

The PET application should not create heavy computational overhead. Any ad-

ditions to the email client system should not be noticeable to the user for example

with long pauses to update the display with behavior information. The models are

multi-threaded in EMT and so the system updates each model in parallel, with low

overhead.

6.3.2 Ease of Use

By ease of use, we refer to the intuitive look and feel of messages, folders, and

addresses that have become standard in many clients should be in some way main-

tained. Although we aim to redefine what it means to use a folder and the entire

email experience, we should still allow users to quickly grasp the underlying mech-
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anisms by providing convenient and easy GUI displays, based on what they have

been exposed to in the past.

The additions that we have added do not add another layer of complexity to

the email system, since most of it will run in the background. In fact most of the

components are invisible to the user with a very intuitive display of the underlying

data.

The install package of PET allows an easy integration into the Thunderbird

email client, which would allow the user to easily add these new features without

having to install and learn new programming environments. The additional infor-

mation help place messages within context, which we will elaborate later in the

Thesis.

6.3.3 Security

In theory this framework of PET and its enhancements may be run as a client-side

or a server-side plug-in. On the server, trust is of paramount importance, since it

would be a central location for all the users models of behavior.

Although forging source email addresses is currently a trivial task, for the

most part anecdotal evidence suggest that users take source addresses for what they

appear unless they are obviously forged (Weisband and Reinig, 1995). Most users

do not expect to receive an email from the President of South Africa for example.

In most cases, user X who sees a message from user Y assumes it was generated by

user Y. Virus and spam messages have taken advantage of this assumption and as

a result have eroded the basic trustworthiness of an email message. By preventing

misuse and detecting anomalies, users would likely find utility in our system of
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restoring trust. Showing an anomalous score associated with a specific message,

the recipient can be alerted to potential email misuse by unusual circumstances or

hijacked account.

Privacy concerns need to be identified and addressed in any implementation.

Server based solutions would need to compute history models, but encode them in

such a way that would not compromise individual privacy. (Bloom filters would be

ideal to store this type of information as they are both compact and one-way hash

structures.)

6.3.4 Compatibility

Clearly, PET must be compatible with existing systems and protocols. As men-

tioned in section 2.3.4, some of the current propositions have proposed to fragment

the email system into zones. This violates a fundamental requirement of the ease

of use of email; that it be available to everyone equally. The decentralized nature

of the Internet and email system is what lead in part to its phenomenal popularity.

There are many legacy systems in use which need to operate over email

channels. If the solutions require a complete overhaul of the current scheme, many

systems would be left out in the cold. This thesis allows the end user the power to

view and manipulate data differently without destroying a system that works.

Because our solution integrates into an email client, this allows us to extend

the current system without requiring overhauling it entirely. In a general sense,

the technology behind the Internet and email has changed over time, and so the

protocols will eventually have to reflect this reality and adopt. But this will take

time, and solutions need to fit into the current framework without causing damage.
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6.3.5 Portability

A popular feature of email is the ability of many email clients to access email

content from anywhere using a web browser. We feel the same should apply to our

system. User models should be portable to any email client through a pluggable

architecture. Additionally system profiles should be portable in the sense that

they should apply their statistics for a given account if the email server were to be

replaced.

We achieve this by allowing the computed models to be stored in a separate

data directory, allowing the user to port and synchronize them between systems.

Although we have implemented our solutions for the Thunderbird email client, the

toolkit can be extended to any client to create a PET information enhancement.

6.4 PET Features

We now describe the types of features collected by the PET environment. Each of

these features provides information on either a message or user behavior.

6.4.1 User Behavior Features

Similar to EMT’s base features described in Chapter 5 we make available features

to model individual user behaviors including:

1. Average response times

(a) First seen messages - identify starts of threads

(b) Replies - identify replies (even if not quoted in message)
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2. Cliques - groups of recipients

(a) Long/short term cliques

i. Average sizes - the average size clique for the user

ii. Average creation - frequency of new cliques

(b) Per clique behavior

i. Number of messages exchanged

ii. Frequency of correspondence - for each recipient

iii. Type of communication one-many, many-many counts

3. Recipient Frequency

(a) Incoming

(b) Outgoing

(c) Average attachment counts incoming

4. Histogram of usage based on hourly/day of the week behavior

(a) Average number of emails sent

(b) Average number of emails received

(c) Average number of Attachments outgoing

(d) Average number of recipients

5. User Email Information

(a) Name before @ sign (user name)

(b) Domain
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(c) End of domain (zone)

(d) First time seen

These histograms are computed for both incoming and outgoing email on the

main user account. In addition each email account seen, has individual histograms

associated with it.

6.4.2 Message Behavior Features

Features to model individual and group messages include:

1. Content of Message

(a) Entire content - bag of words

(b) Subject line

(c) Date

(d) Time

(e) Average size

(f) Flags

(g) Location of sender (internal/external)

(h) Location of recipient (internal/external)

2. Level of Interest

(a) Deleted only

(b) Deleted after read short time
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(c) Deleted after read long time

(d) Moved to new Folder

(e) Moved to old Folder X

3. Thread of Discussion

(a) Average type of discussion

(b) Average number in discussion

(c) Clique changes in discussion

(d) Attachment changes in discussion

4. Attachment Statistics

(a) Malicious Email Filter, MEF score (Schultz et al., 2001a)

(b) Type of attachment

(c) Average size

(d) Average number

(e) Frequencies of types

(f) Incoming/outgoing

(g) Keyword centroid

(h) N-Gram centroid

(i) Histogram of 1-gram sorted (distribution of characters in attachment).

5. Flow Behavior

(a) Within/outside of cliques
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(b) Histogram of messages between replies

6.5 Profiles and Alert Reports

Figure 6.2: A profile is a data structure that represents a behavior model over a
subset of features

A profile is a data structure which represents a behavior model over a subset

of features. Each profile has a unique name, and the user can specify custom

profiles. Additional features can be added to the system by a programmer and

used for future profile enhancements. The different windows presently in EMT all

represent unique profiles. We extend EMT in PET by creating portable profiles,

and the ability of user-specified profiles.

For example the ’Usage’ profile currently in the usage window is composed

of user features 4a-d but is hard-coded in EMT to the specific window.

The profile logic also contains the rules for issuing alerts from a specific

profile. Alerts can be issued either on a specific profile or a correlated set of profiles.

In addition messages can be associated with each other under some specific

profile. In that case a group of messages are summarized under one profile that

models a centroid of the messages.



CHAPTER 6. PET 124

Given a set of messages, we can profile them, and then for each message in

the archive find the distance from this profile. All distances under a pre-computed

threshold would indicate a similarity to be included in the message group cluster.

In this case the profile structure would show related messages.

This is implemented and described in section 7.4. The alerting mechanism

is described in section 5.4.8.

6.6 Sample Profile - User Similarity

We present a sample PET profile that is currently implemented in EMT’s “similar

user” window.

Figure 6.3: Similar User Data Structure Profile

Similarly behaving user accounts may be identified by computing the pair-

wise distances of their histograms (e.g., a set of accounts may be inferred as similar

to a given known or suspect account that serves as a model). We balance and weigh

the information in the histogram representing hourly behavior with the information

provided by the histogram representing behavior over different aggregate periods

of a day. This is done since measures of hourly behavior may be too low a level of
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resolution to find proper groupings of similar accounts. For example, an account

that sends most of its email between 9am and 10am should be considered similar

to another that sends emails between 10am and 11am, but perhaps not to an

account that emails at 5pm. Given two histograms representing a heavy 9am user,

and another for a heavy 10am user, a straightforward application of any of the

histogram distance functions will produce erroneous results.

Thus, we divide a day into four periods: morning (7am-1pm), afternoon

(1pm-7pm), night (7pm-1am), and late night (1am-7am). The final distance com-

puted is the average of the distance of the 24-hour histogram and that of the 4-bin

histogram, which is obtained by regrouping the bins in the 24-hour histogram.

Because some of the distance functions require normalizing the histograms

before computing the distance function, we also take into account the volume of

emails. Even with the exact distribution after normalization, a bin representing

20 emails per day should be considered quite different from an account exhibiting

the emission of 200 emails per day. Figure 6.3 graphically displays the similar

user profile structure. The type of histogram distance measurement and the weight

assigned to each feature in the profile is what defines the specific profile. Notice

that a profile can contain other profiles in a recursive fashion.

6.7 Plug-in Modules

The plug-in modules of PET (shown in Figure 6.1) are extensions to a standard

email client. The modules allow the output of the profiles to be displayed in the

email client window. In addition it allows the user to create profiles, view the

internal representation of the profiles, and set system-wide preferences.
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6.8 Summary

To summarize we have developed a plug-in system to allow the EMT behavioral

models to be used by any email client in an environment we call PET. This allows

a standard email client to access the behavioral model information and add context

to the email experience. In the next chapter we illustrate other behavior-based

extensions to email made possible by leveraging historic email behavior applied to

new messages.
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Chapter 7

Priority Mechanisms

The PET system described in Chapter 6 is a data mining extension to email clients

designed for a variety of analysis tasks applied to email. In this chapter we describe

how to apply several of PET’s built-in analytical features to prioritize emails for

user consumption based upon an analysis of prior user behavior. This application

to prioritize emails extends the typical email experience provided by current gen-

eration email clients. The user’s prior email behavior is used to extract contextual

information to propose a priority ordering over new messages.

7.1 Background

Standard email clients for the most part, treat each message as an independent

entity presenting messages to the user as some combination of sender, recipient,

subject, and date (Figure 7.1). Additional information about the status of the

current message such as unread, read, and answered is also usually provided.

Some email clients provide a means of threading messages based upon subject
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Figure 7.1: Standard email view in Thunderbird using sender (A), subject (B),
and date (C). In addition standard email clients also include Folder lists (D) and
message preview (E).

line analysis. For following discussions, clients can be set to embed prior email

bodies in a reply message memorializing a long email discussion in an increasingly

large and complex body.

Furthermore, most clients support “sender priority”, a means of a sender

marking messages with a user specified prioritization marked on the message when

received in the recipient’s inbox. This prioritization is sender initiated, not neces-

sarily what the recipient would agree with. That is to say, to protect against abuse,

the recipient ought to decide what is high priority and what is not, regardless of

the sender indication.
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Moving messages into folders is the standard method for helping a user man-

age their email communications. Some clients provide automatic suggestions to help

the user decide on the target folder (Segal and Kephart, 1999) while others provide

a rule-based system (Pollock, 1988) or manual methods.

The ’single message view’ paradigm is lacking in the fact that it does not

include contextual information and ignores the fact that each email message does

not exist in a void, but rather forms a larger picture of the individual user’s email

behavior profile over time. Contextual information is essentially the responsibility

of each user, who implicitly has the knowledge such as who is important and which

message/task needs priority.

Unfortunately the most popular clients do not currently implement auto-

matic prioritization of individual messages based on past usage. Even the act of

grouping messages into individual folders by the user does not address the issue

of information overload. Over time most users find that folder topics need to be

split into sub-folder topics, consuming valuable user time and potentially allowing

messages to ’slip between the cracks’.

7.2 Priority Models

The email inbox has become the ’all in one’ unorganized pile for both pending and

new tasks. By computing message priority automatically from user behavior we

can contribute to making email usage enjoyable once again to the end user. In

addition, by prioritizing filtered email, either at the good level or spam level, we

can pick out outliers, or false positive examples. We now describe a behavioral

model for prioritizing email.
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7.2.1 VIP Communication

As mentioned in section 3.2.4 the VIP Communication model compares the average

time it takes a user to respond to different correspondents and computes which

correspondent the user responds to fastest (i.e. the VIP). One may infer from this

analysis the relative importance of individuals based upon the user’s response rate.

Those to whom the user may respond more quickly are intuitively more likely to

be important to the user. Although this might be hard to judge on a per message

analysis, the long term behavior over many replies, converges to a very accurate

model of importance. Note, that this model does not work well for every single

type of email message, as some messages will typically refer to non-email related

tasks. For example, an email reminder about a meeting (which will usually not

illicit a reply email), those can be addressed with new task based models (Dredze

et al., 2006).

We note that within some organization structures, certain individuals might

mask their behavior by holding back replies to certain sets of individuals. This

might be done to impress upon the recipients that the user is overworked, or to mask

the fact that they are available. We premise that this behavior will be consistent

over time, and thus directly translate into an ordered list of important users to the

recipient. For the rest of the chapter we will make the simplifying assumption that

most users reply to messages in the order of importance in which they are received.

7.2.1.1 VIP ranking

To determine the importance of a person that the user exchanges emails with, the

average communication time (to send a reply) is not enough. We also need to
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consider the number of the emails exchanged between users.

Since people often reply very quickly to some simple emails, yet often take

more time to think and respond to more important, complex, and long emails we

need to factor that into the calculations. If we only use the communication time

to rank the VIP, we tend to see some accounts with very short communication

time but also with very few emails exchanged. Usually, we consider the VIP to

be the person(s) with whom we communicate both often and quickly. One can

dissect the communication behavior by viewing all three numbers: number of emails

exchanged, average communication time, and VIP rank.

Thus, we derive our formula to compute the VIP score with respect to some

user A:

V IP =
#email

avg#email
∗ f +

avgT ime

time + avgT ime

10
∗ (1 − f)

(7.1)

Where #email is the amount of emails exchanged, avg#email is the average

amount of emails over all accounts exchanged with user A. Similarly time is the

turn around time to a reply and avgT ime to any user, are calculated based on

these emails. We use avgT ime

10
as a pseudo number to avoid a small denominator.

f is a factor between 0 and 1 that can be adjusted, i.e. weighting the amount of

emails versus communication time in determining VIP rank. Larger f results in

more weight assigned to the amount of email, and vise-versa. The larger the VIP

score, the more important this account is to the selected user. We scale the score

from 0-SR with SR being the score of the most important user.
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7.2.2 Usage Behavior

The Usage behavior model allows comparison between the behaviors of different

periods of the same email account. Usually, the comparison is between the behaviors

of the current period with that of a previous period which we assume to be normal

behavior. Thus, we can calculate whether current behavior differs from the normal

behavior and can use it to prioritize an email.

We use a histogram to represent an account’s behavior and to make compar-

isons based on the distance between histograms. We use the weighted Mahalanobis

distance function, which is a modified version of the basic Mahalanobis function

mentioned in section 3.4.0.4.

7.3 Prioritizing: Combining Usage and VIP Scores

We combine the VIP and usage scores when prioritizing the emails in the user’s

inbox. Prioritizing is implemented in the message view of EMT. A message view

consists of a specific folder or specific set of constraints on the email messages such

as specific dates, users, groups of users, etc. EMT’s Message view is designed to

allow a view to be quickly and seamlessly configured (Figure A.1 screen-shot of

message view). A PET profile would interact with an email client to achieve the

same results.

Once a specific view is chosen, we can reorder the messages automatically

using our prioritizing scheme. The VIP and usage models are kept up to date as

new messages enter the email repository. We use those models to calculate the VIP

and Usage scores and combine them using the following algorithm:
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• Order the messages by time.

• Calculate the sum of VIP

• Reorder messages by VIP score.

• Calculate usage statistics

– For High VIP, high usage score (unusual) push the priority score higher

by α

– For low VIP, high usage scores, push priority lower by β

The reasoning is that important users, who might send an unusual email

(based on past behavior) would be more interesting than a non-important user who

sends an unusual email.

The advantage to this scheme is that none of the parameters have to be

set by the user; simply using the email client is enough to allow the model to be

computed and deployed.

7.4 Message Grouping

An alternative method for reordering messages is clustering or grouping messages.

Once groups are created, we can display them as either message summaries or

groups of related messages.

For example, currently EMT displays clique groups and summarizes them

by most frequent subject words as in Figure A.6.

In general clustering messages, will also include threads of discussion. Many

clients which implement threading do so based on subject lines (Thunderbird) or
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direct reply association (Gmail). So if a user retypes a subject in a reply, or creates

a new message with a reply to a previous message, those client will not correctly

associate the two messages. Clustering allows us to group similar messages and

find threads of conversation.

7.4.1 Content-Based

In many cases it is useful to analyze individual message content, and use those

contents to help group similar-looking messages. In many cases, messages not

directly related to individual threads of discussion will appear in a group. This is

because email sometimes refers to work which is performed outside of the specific

time-frame of the communication exchange. For example, an email might ask a

student to perform a certain experiment. The results of the experiment are not

necessarily contained within the reply to the original message. In some instances, a

period of time has passed since the original email, but we can relate the two emails

(or thread) by grouping emails based on content similarity.

7.4.1.1 Subject

In subject grouping, we use an n-gram distance to group messages. Similar to what

is described in section 3.4.1.2 we cluster all messages in a view, and present the

groups to the user to examine.

7.4.1.2 Body

In body grouping, the cosine distance is calculated over the textual contents of the

message. For computation efficiency, the first n bytes can be used without affecting
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the message clusters. In general it has been shown that the first 800 bytes are

sufficient to profile and group message contents (Hershkop and Stolfo, 2005b; Li

et al., 2005). This of course is best used on emails where the new contents are at

the beginning, as opposed to users or environments where comments are attached

to the end of the email message.

7.4.1.3 Attachment

In attachment grouping, we can either group by attachment name, attachment size,

attachment type, or a 1-gram frequency distribution.

7.4.2 Keyword

Keyword grouping allows messages to be grouped based on a set of keywords. Each

keyword is weighted by a TF-IDF style weight, which assigns greater weight to less

frequent keywords (see section 3.4.1.3). For each message, we can calculate the

weight of the matching keywords, and assign it a score. We can then rank-order

the scores and combine the scores into groups using a threshold, and present the

groups to the user.

Keywords can either be specified by the user, or extracted from a set of

messages using basic statistical properties of occurrences. A standard keyword list

and the interface to add, remove, load, and save keywords is shown in Figure 7.2.

Figure 7.3 shows the wizard display which allows a set of messages to be analyzed

and have the keywords extracted. In this view, the common stop words have been

extracted before running the analysis.
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Figure 7.2: Standard keyword list.

Figure 7.3: Wizard to help extract keywords based on frequencies.
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Chapter 8

Evaluation

Throughout the thesis we have introduced and illustrated the data mining and

modeling components of our email analysis engine. We now present an overview

of some of the tests and results of the components of the system in regards to

detecting unwanted emails and prioritizing messages.

• Evaluations of the individual models presented in Chapter 3.

• Evaluation of the combination algorithms presented in Chapter 4.

• Evaluation of SpamAssassin, an open source solution over the same set of

data.

• Illustration of message reorganization using principles from Chapter 7.
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8.1 Results

8.1.1 Setup

Each of the component classifiers presented in this thesis and embedded in EMT

produces a classification output as a score in the range [0-201] with a high number

indicating confidence in the prediction that an email is unwanted or spam. We

refer to these outputs as the ’raw scores’, which we combine through the various

correlation functions described in chapter 4.

The training regime requires some explanation. A set of emails are first

marked and labeled by the user indicating whether they are spam, or normal. This

information can also be gleaned by observing user behavior (whether they delete a

message prior to opening it, or move it to a “garbage” or “spam” folder). Although

sometime the entire message will be contained in the subject line (example, Meeting

canceled!), most users will on average also click to make sure if there is further

details in the message body. For our experimental results, users provided their

email files with those messages considered spam placed in a special folder. Those

we labeled as spam, while all other messages we labeled as normal. These were all

messages received, deleted emails were moved to a deleted folder, but not actually

deleted.

This data set of real emails was also used to study the model combination

methods. Our data set consists of emails collected from five users at Columbia

University spanning from 1997 to 2005, a user with a Hotmail account, and a user

with a Verizon.net email account. In total we collected 320,000 emails taking up

about 2.5 gigabytes of space. Users indicated which emails where spam by moving
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Year Number of Emails
1997 85
1998 687
1999 2355
2000 9553
2001 25780
2002 56021
2003 145291
2004 81176

Table 8.1: The number of emails per calendar year for the main data set in the
experiments.

them to specific folders. Table 8.1 indicates the spread of the data over time.

Because current spam levels on the Internet are estimated at 60%, we sam-

pled the set of emails so that we would have a 60% ratio of spam to normal over all

our emails. We were left with a corpus of 278,274 emails time-ordered as received

by each user.

We tested the models using the 80/20 rule with 80% being the ratio of

training to testing. Hence, the first 80% of the ordered email are used to train the

component classifiers and the correlation functions, while the following 20% serve

as the test data used to plot our results. This set up mimics how such an automatic

classification system would be used in practice. As time marches on, emails received

are training data used to upgrade classifiers applied to new incoming data. Those

new data would be used as training for another round of learning to update the

classifiers. Earlier tests used 5-fold cross validation without any statistical difference

on the results (of the 1-fold), so we opted to keep it simple with the 1-fold tests.

The data used was pristine and unaltered. No preprocessing was done to
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the bodies of the emails with the exception that all text was evaluated in lower

case. Headers of the emails were ignored except for subject lines that are used in

some of the non-content based classifiers. While adding header data would have

improved individual classification, there is much variability in what is seen in the

header, and we felt it might over-train and learn some subtle features of tokens

only available in the header data present in the Columbia data set. For some of the

individual classifiers: Ngram, TF-IDF, PGram, and Text Classifier, we truncated

the email parts so that we only used the first 800 bytes of each part of the email

attachment. This was used for both efficiency and computational considerations,

as there were many large executable attachments in our dataset. In addition the

increase in detection was about 10% with the same false positive rates over using

full email bodies. The reason is because of noise in the number of tokens seen in

very large spam messages.

8.1.2 Features

Traditional machine learning modeling of email has been based on the textual

content of email messages. Typically tokens are extracted from the email body (and

sometimes header data) and then processed by some machine-learning algorithm.

In prior work, we have proposed and demonstrated how non-content features

can be used to profile and separate virus and spam from normal emails (Hershkop

and Stolfo, 2005b). The non-content features are specific static features extracted

from the email envelope that are not part of the actual message body.

In our behavior classifier using a näıve Bayes algorithm described in section

3.1.3 the set of features extracted is a set of static features including sender and
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recipient email names, domain names, and zones (domain ending such as com,

edu, etc). In addition, the size of the message, number of recipients, number of

attachments, and the MIME-type of the email are used.

8.1.3 Evaluation Measurements

The evaluation of any spam filter has traditionally borrowed heavily from the in-

formation retrieval domain. We now define the measurements we have used:

Detection rate - is the total number of spam detected divided by the total number

of spam. This number is an indication of the effectiveness of the model to

weed out spam messages. The number alone is not a total indication of the

effectiveness of a model, as labeling all messages as spam will result in 100%

detection but 100% false positive rate.

Detection =
tp

tp + fn
(8.1)

False positive rate - represents the number of non-spam emails flagged as spam

divided by the total non-spam messages. This number measures the amount

of normal emails flagged as spam. The ideal goal would be to have a 100%

detection rate, and 0% false positive rate.

False negative rate - is the amount of spam flagged as normal. This serves as

an indication of how many messages are slipping through the system.

Error rate - is the percentage of examples that the model has misclassified divided

by the total number of examples:



CHAPTER 8. EVALUATION 142

fp + fn

tp + fp + tn + fn
(8.2)

In other words the amount of emails misclassified regardless of the mistakes

made by the model.

Cost - was introduced in some of the literature (Hidalgo and Sanz, 2000; Androut-

sopoulos et al., 2000b) as an important but hard to evaluate factor in spam

detection. The feeling is that deleting a good message should cost much higher

than simply moving the message into a spam folder for user authorization to

delete. In the literature there is a tendency to assign a cost of 1, 9, or 99 as

a penalty of misclassifying spam.

Total Cost Ratio is given as:

Ns

λnL→S + nS→L

(8.3)

where λ is the cost associated with mis-detection, N is the total emails, nL→S

is the number of misclassified spam and nS→L is the misclassified normal.

The study of how cost interacts with different types of spam such as unwanted,

offensive, security related in relation to different levels of wanted emails is

outside the scope of this thesis.
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8.1.4 Spam Detection

8.1.4.1 Individual Classifiers

The individual classifiers described in Chapter 3 were evaluated over our email

corpus. The following individual classifiers were used:

NBayes : is a Non-Content Näıve Bayes Classifier, that takes behavior features

and combines them using Bayes theory.

NGram : is a N-gram based classifier that uses an n length sequences from the

body of the email to learn probabilities of individual tokens.

Limited NGram : is the same as NGram but ignores most tokens except those

which hash to a specific primary number base. This has the effect of reducing

the token space to about 10% of the total space, allowing larger N-gram sizes

without the memory overhead associated with large N-grams.

Textclassifier : uses whole words as tokens and learns a probability associated

with each token during training.

PGRAM : is a biased text classifier that is described by Paul Graham in his work

on spam detection (Graham, 2002). We use the classifier because it has been

promoted as a one size fits all solution in some literature and it does perform

reasonably well over general text.

TF-IDF : is a classifier using whole words as tokens and calculating the probabil-

ities based on term frequencies divided by document frequencies. This results

in making a fair trade between low-occurrence words in shorter documents

vs. higher occurring word tokens in larger documents.
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URL : is a classifier that analyzes only the URL found in the email body and

learns probabilities associated with parts of the URL. For emails without any

URL information, a score of 0 (normal) is assigned.

Figure 8.1 shows the performance results of the individual classifiers over

the email data set. Of particular interest is that the NBayes non-content, Text

Classifier, and PGram classifiers are all very strong classifiers. Table 8.2 displays

the detection rates highlighted at certain points to give a sense of how well they

compare to each other. The gain is calculated as described in section 4.8. Ideally we

would like an individual classifier with high detection and almost no false positive.

As can be seen in the graph, the classifier peak at some point in the ROC curve.

Figure 8.1: Results of individual Spam Classifiers using the full data set and 80/20
evaluation.
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Classifier Detection Rate False Positive Rate Gain
NBayes(non-content) 88% 3.8% 79.8%

Ngram 75% 4.0% 72.2%
TextClassifier 90% 5.0% 70.0%

Pgram 90% 5.5% 77.2%
TF-IDF 74% 4.2% 61.5%

Limited Ngram 66% 5.0% 61.4%
URL 55% 10% 32.0%

Table 8.2: Individual Classifier Performance Over Spam Experiments

8.1.5 SpamAssassin Results

In addition to our own spam classifiers, we compare the results of running SpamAs-

sassin version 3.0.2. We ran it using the default rule set (April 2005). Performance

is shown in Figure 8.2. Notice when it only sees the first 10% of the data it achieves

very high initial accuracy but seems to reach a plateau afterward. This is probably

because of the nature of its highly specific rule set that has been highly tuned for the

older spam which we are testing over. The plateau indicates that as spam adapts

over time, this level will sink unless the rule set is updated in a timely fashion. As

can be seen from the full dataset, differentiating between spam and non-spam using

only rules generated from outside datasets results in around 70% detection rates.

We should point out that although we tested SpamAssassin for comparison

to a well-used solution, in practice it seems to run at higher accuracy with the

addition of a sophisticated Bayes engine included with the program. We did not

use its engine due to the overhead of recomputing the batch probabilities in our

experiments and issues to fine tune the runtime of their Bayes component. We did

not have any success in combining SpamAssassin with our other classifiers due to
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Figure 8.2: Results of SpamAssassin using 10% and the full data set and 80/20
evaluation. The lower accuracy scores (bottom curve) were on the full dataset.

Figure 8.3: Probability curve of SpamAssassin classifier over entire dataset. The
x-axis is the score range from 0-201, and the y-axis is the cumulative probability of
being spam.

the nature of the scores generated. The score probability graph (Figure 8.3) shows

that the scores generated by SpamAssassin do not necessarily fall into an easily

divided space of low to high probabilities. For example, when looking at NBayes

classifier score range (Figure 8.4), we see a nice curve between good and spam

scores.
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Figure 8.4: Probability curve of näıve Bayes behavior classifier over entire dataset.
The x-axis is the score range from 0-201, and the y-axis is the cumulative probability
of being spam.

Classifier Detection Rate False Positive Rate Gain
Equal Weights 87% 2.3% 84%

Single Dimension NB 93% 3.6% 85.1%
Judge Combination 99% 0.025% -

N Dimension 88.7% 2.3% 84.5%
Weighted Majority 85.5% 2.5% 79.9%

Table 8.3: Combination Classifier Performance Over Spam Experiments

8.1.6 Model Combination

Once the component classifiers are applied to the labeled email corpora, the set of

model outputs (the classifier raw scores mapped to the range [0-201]) are combined

by a specific correlation function. Some of these correlation functions require a

training phase to learn the necessary parameters. The component classifiers are

tested against their training data and these model outputs are used to train the

correlation function.

Since some of the correlation functions require training data, we would like

to train the combination algorithm concurrently with the training of the individ-

ual classifiers. Although we could have first given each classifier all the training

examples and then extracted scores over those examples, we felt that would not
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Figure 8.5: Results of combination algorithms using the full data set and 80/20
combining all the individual classifiers.

reflect the real world setting where only partial examples of spam would ordinarily

be available, only those seen to date by the user.

To mimic this process, we batched the training data into groups of 1000

examples used to train the classifiers. After each batch, each classifier was executed

to generate raw scores for each of the examples seen in the current batch. These

scores were then used as input to the model combination algorithms to train the

correlation function. We used a batch size of 1000 for efficiency purposes, although

any size should be acceptable to achieve comparable results. We realize, however,

that individual classifiers will shift individual scores depending upon the amount of

training data used. For example, for some classifier, its scoring might be different

if we train 5000 emails rather than 1000. However, we preferred to mimic a more
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realistic training regimen reflecting how such a system may actually be used as a

real application, and thus we believe this batch approach is not unreasonable.

For the experiments we evaluated the following combination algorithms:

EWeights - is a classifier that assigns equal weights to all the individual classifiers.

NBweights - is a classifier that builds a table of the probability that a classification

by each classifier is correct. That is, it looks at the classification generated

by individual classifiers and then calculates the probability of it being correct

based on performance over the training data. The result is mapped to a choice

between the maximum or minimum available score for each classifier.

NB 2 dimensional - is a classifier that learns that weighs to assign each classi-

fier by binning the scores and learning probabilities associated with each bin

interval.

Weighted Majority - is a classifier that adjusts the weight of each classifier based

on the performance during training. For those classifiers which correctly

identify an unknown example, the classifier assigns a larger weight to their

vote, while subtracting weight from those classifiers which make mistakes.

Judge - is the classifier which chooses the maximum available score or minimum

given the additional information of knowing which class the example should be

in. This classifier is for testing purposes to evaluate how well the combination

algorithms are performing.

Figure 8.5 shows the results of combining the classifiers. Table 8.3 has the

combination algorithms and the gains achieved in each case. Notice that false
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positives have been reduced by about 3% and detection improved by about 4% over

the best individual classifiers. This is also reflected in about a 15% improvement in

the gain measurement showing clear advantage of filtering with multiple classifiers.

Figure 8.6: Results of combining 3 strongest algorithms.

We next compare the merit of only combining strong or weak classifiers. In

Figure 8.6 we combined the three strongest algorithms, namely non-content, text

classifier, and PGram. Notice that approximately a 2% false positive reduction is

achieved over the strongest component classifier.

We compare the combination of Ngram, URL, Limited Ngram in Figure 8.7.

Surprisingly the weighted majority and NB1 are almost the same here. Since TF-

IDF on a full email body has a very low detection rate, we tried a combination of

URL, TF-IDF(full), and Limited Ngram in Figure 8.8. Although there is a negligi-

ble improvement in false positive rate, there is a very strong detection improvement
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Figure 8.7: Results of combining Ngram and Ngram-Limited.

of about 10%.

In Figure 8.7 we highlight what happens when combining two similar clas-

sifiers. Notice that the performance of the Judge algorithm has been significantly

reduced, as expected. This confirms that the individual classification errors strongly

overlap, thus the maximum combination is also lower.

The TF-IDF (full body) classifier was a surprisingly poor performer and thus

represents a weak classifier combination. We showcase what happens to the TF-

IDF algorithm as it is exposed to less of the email parts. The improvements are

going from full, to first 800, to first 400 bytes and compared to NBayes in Figure

8.9. We also show the combination when we combine the best and worst classifiers

in Figure 8.10. Notice that the Judge is not returning the theoretical limit and the

reason is that TF-IDF does not return a confidence score, but rather a distance
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Figure 8.8: Results of combination of URL, TF-IDF(full), and Limited Ngram.

metric to some document centroid. In addition because it is being trained on the

entire body, the algorithm is being overwhelmed by noisy token probabilities.

Because of this, the scores here are not easily combined by a simple combining

scheme. On the other hand, the Näıve Bayes combinations are mapping the scores

to a probability space, where they can be interpreted as a confidence value. This is

also the reason that it has been found that combining confidence scores works better

than combining binary classification (Kittler et al., 1998). There is inherently more

information in such cases. The same is true with the SpamAssassin results. Figure

8.3 displays the probability curve for SpamAssassin vs. näıve Bayes probability

curve shown in Figure 8.4.
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Figure 8.9: Results of exposing TF-IDF to different body lengths.

8.1.7 Prioritization

To test a practical application of the algorithm on a large data set, we applied the

algorithm to our set of pre-labeled data from our email corpus. The goal was to

detect any mislabeled spam messages using the priority algorithm to separate and

cluster groups of related spam messages. We prioritized one spam folder, and found

that there was a group of messages which had been mislabeled, and mistakenly put

into the spam folder (they actually were messages from an anti-spam discussion

group). Manually digging through all the messages would not have been practical

due to the size of the dataset.

In the next section we analyze these results and draw some conclusion and

thoughts for future directions.
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Figure 8.10: Results of combining Non-content Näıve Bayes and TF-IDF (full
body).
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Figure 8.11: Results of combining weak classifiers.
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Chapter 9

Conclusion

The research presented in this thesis identifies shortcomings of the current email

systems and offers implemented solutions to help address these weaknesses. In the

course of producing this thesis, we have implemented a data mining framework to

mine many useful features that are present in the underlying email data.

In this chapter, we discuss the results of the previous chapter and summarize

the main research contributions of this work. We then overview the state of the

current implementation, list the main limitations of this approach, discuss future

research directions and conclude the thesis with implications of this work on the

field of data mining and email analysis as a whole.

9.1 Discussion of Results

For the task of spam detection our evaluation has shown that although individual

spam classifiers perform very well, they each have different areas of expertise. This

is not surprising as the features extracted were different in most of the classifiers. In
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addition, the numbers reflect the real world email universe in a university setting,

where the types and amount of emails vary widely from day to day and semester

to semester.

Our research shows that unwanted messages can be detected by consider-

ing the behavior of the email user. We have investigated several particular model

combination algorithms and plotted their performance using a number of super-

vised machine learning classifiers. We inspected several of the emails that were

persistently misclassified by all the combinations. These peculiar emails comprised

messages with only graphics attached, flaming debates on some news groups, and

some empty emails that had no bodies (their message was essentially their subject

line). We believe that much lower false positive rates can be achieved on this data

set by including features extracted from the email header data, where patterns such

as the type of email client, or Internet section of the IP class can shed more evidence

on the spaminess of a message.

In summary the results of our experiments have shown how combination

algorithms can be directly applied to spam classifiers, and used to improve both

false positive and detection rates on either strong, weak, or a combination of these

classifiers. We rely on the gain formula to help choose a specific algorithm. The

improvements are most effective when the component classifiers have been trained

on different feature sets, similar to results achieved in other fields (Tan and Jin,

2004; Tax and Duin, 2001). What is surprising is the robustness of the equal

weight classifier for combining two classifiers in our experiments. We do achieve

better results when combining more classifiers, but intuitively equal weights shows

surprising robustness. We attribute it to the smoothness of the probability graphs
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of the individual classifiers. That is, they somewhat approximate a confidence in

the spam scores.

A very strong reason to work with combination algorithm is something

learned from the computer security domain: resistance to attack. Concentrating on

only a single classifier, to fine tune it to perfection, will only encourage spammers to

try to, and eventually defeat, that specific mechanism. By using a combination al-

gorithm, an email enclave can be protected against compromise of any single Spam

classifier. This is highlighted in Figure 8.10 where the scores of the TF-IDF (over

full body) can be thought of as being compromised in some fashion so that they

do not reflect a true confidence. The combination algorithms that are based on

remapping probabilities are remarkably resilient on the face of this kind of attack.

In reality, a simple equal weights algorithm can be used, and a second probability

algorithm run along side as a reality check on the performance of the classifier.

Having automatic checks and balances is one way in which spam classification can

gain user confidence by displaying a confidence metrics, without requiring the user

to trudge through mounds of spam in the spam folder searching for misclassified

examples.

The results achieved indicate that the implemented models in EMT and

PET provide a fairly robust and accurate system for a variety of analysis tasks.

These concepts are applicable to a far wider range of problems, including virus

detection, security policy violations, and a host of other detection tasks (Stolfo

et al., 2003b; Stolfo et al., 2003c). It is important to note that testing EMT in

a laboratory environment only suggests what its performance may be on specific

tasks and source material. The behavior models are naturally specific to a site or
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particular account(s) and thus performance will vary depending upon the quality of

data available for modeling, and the parameter settings and thresholds employed.

Although the model combination functions work well in these test cases, there

are still other analytical tasks that should be explored to determine how to fully

automate a model combination and correlation function feature. In the case of the

two-class spam detection problem, the methodology is straightforward. This may

not be the case for multi-class learning problems.

9.2 Contributions

This research makes five main contributions to the state of the art in research in

data mining and email analysis:

Email behavior models - We present new models to represent email usage. These

models represent past usage patterns and calculate current pattern deviations

using standard metrics. The types of models and pattern calculations are de-

scribed in Chapter 3. Our research shows that unwanted messages can be

detected by considering only the behavior of the email user.

The analysis of email from a user, enclave, and attachment view provide a

rich set of information to improve the email experience.

Framework for mining email data - We present a database back-end to store

and analyze email data. The advantage of the database file system is that it

is both fast and scalable. It allows individual features for statistical analysis

to be quickly and easily calculated without having to process all the data

sequentially with a custom built application. In addition it allows an EMT
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like system to be placed either on a per account basis or a system wide basis

using the same underlying technology. A similar database back-end was also

developed as an architecture component in analyzing IDS attack data in a

real time system (Lee et al., 2001).

Behavior Profiles - We develop the concept of a behavior data structure that

stores the user behavior in a compact representation. The representation not

only allows behavior comparisons to be done efficiently, but also allows a user

to port their behavior profiles between machines and accounts.

Users are used to being able to port their individual contact lists and email

data between applications, it should not be different for their usage patterns.

By encoding the data in a portable form, we allow the behavior to help protect

the user data to any client side application. For example adding it as a

secondary security layer to a typical user-name and password authentication.

Automatic message prioritization - We introduce a novel scheme to prioritize

messages in an email collection based on past behavior in Chapter 7. The

user’s own behavior can be used as an indication for which messages and users

are more important and hence PET reorders the list of emails based on this

criteria.

Allowing the behavior model to adopt as the user changes habits is a powerful

addition to the email experience, especially in defining what is important.

Context evaluation by the user, is currently a manual subconscious process

when communicating through email.

Spam classifier model combinations We have developed a novel scheme for
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combining various spam classifiers to achieve higher detection and lower false

positive rates. The advantage of combining classifiers is to allow a layer of

security over the filters so that zero-day exploits can be mitigated through

multiple classifiers.

9.3 Software System

Aside from the theoretical contributions, this thesis contributes to the state of the

art by making several tools available to the research community. PET is a fully

implemented system, allowing components to be developed for producing behavior

models of an individual or group of email accounts. In addition, the functionality

to compare behavior patterns over time and message clustering over non-content

features were developed. We enumerate some of the software prototypes that this

thesis has generated.

• Java Email Parser - The email parser developed for EMT is a very useful

tool on its own. There are no open sourced, parsers written in Java to parse

through email archive files in MBOX formats. Java-Mail is a Java package

from Sun Microsystems that can interface to a specific type of email server

and retrieve email messages that the user can store and manipulate locally.

Unfortunately this package cannot read a mbox format file but must fetch the

messages from some email server configured in a specific way. In many cases,

users do not have access to an email server to host old messages. Usually

they will have a collection of emails they would like access in some standard

way.
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The Java parser bundled with EMT can process mbox and outlook emails,

and either move them to an EMTstyle database or can be extended to work

with a user specified data formats or email collections.

• EMT - The email mining toolkit has been developed over time to allow users

to analyze large amounts of offline emails. The behavioral models developed

for EMT each illustrate an important behavior analysis of users, groups,

and attachments in an email enclave. The combination of individual models

allows us to leverage multiple views of the underlying behavior data to quickly

highlight unusual or important email flow information. EMT has been tested

by and released to a host of users and agencies who are collaborating on

specific features and extensions for EMT for general use.

• PET - The PET toolkit is a bundled toolkit to allow a standard email client

to be extended to use behavior models. It can interact with standard email

clients (we implemented a proof of concept using Mozilla’s Thunderbird) to

allow the behavior patterns to be gathered in a real time environment and

displayed to the user.

• EMT Forensics - We have extended EMT to allow a forensic analyst to

quickly locate interesting email by tying together the different disparate be-

havior models into one window location. The usefulness of the system is not

limited to forensic investigators, but also to an automatic system to detect

account misuse or abuse.
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9.4 Limitations and Future Work

The current email system is highly reliable in routing and delivering messages from

point to point across the Internet. It still lacks basic authentication and security

features such as sender verification, default message signing, and message delivery

receipt. Some of these are being standardized by different organizations with many

different agendas and goals driving their implementations. Many of the problems

being faced by email users today were foreseen by Denning (Denning, 1982) in 1982.

This thesis contributes to solving some of the issues related to ease of use, message

prioritization, and information organization related to the email experience.

It has been observed that email has evolved to be many things to many

people. Because of this, automatic tools to augment the email experience will need

to be developed to allow users to enjoy using email without being overloaded by the

experience. At the same time as with any other emerging technology base, it will

require user education to keep ahead of the various fraudulent schemes (Balvanz

et al., 2004).

One way to extend the priority algorithm presented in this thesis is by adding

more features to allow it to fine tune itself to the user’s personal preferences. For

example, we currently do not take into account the length of emails when calculating

the VIP score. In addition, the behavior features are not tuned so that very old

data is moved out of the model. Allowing size and other features to play a role will

undoubtedly make the algorithm more accurate.

In addition, research on task extraction (Dredze et al., 2006; Gwizdka, 2002;

Huang et al., 2004) has shown promise with the possibility of trying to extract

basic tasks from the email messages. Allowing task goals to be factored into the
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priority scheme will allow pending items to be put ahead of already accomplished

tasks. For example, studies have shown that many people email themselves notes

with links, URLs, or reminders. Placing those at the top of the priority list would

make more sense.

There has been research on how to generate automatic email responses based

on past responses (Scheffer, 2004; Bickel and Scheffer, 2004). Although very promis-

ing the techniques have only been so far applied at trying to match previously

manually answered emails with new incoming ones, and select the most appropri-

ate reply. It would interesting to apply similarity measures presented in the thesis

to the answering domain.

A problem we faced when trying to test out new ideas dealing with email

systems, was an inherent limitation of the available data. Because we only have

access to our own data, our results and experiments no doubt reflect some bias

towards our university environment. Much of the work published in the spam

detection domain also suffers from the fact that it tries to reach general conclusions

using very small data sets collected on a local scale. Ultimately it will require either

an organization with large amounts of email users and access to large amounts of

email data to refine the ideas presented in the thesis or an effort by volunteer users

to help push forward the ideas presented here using some type of shared data sets

respecting individual privacy of the data. Some have begun to take notice, and

study very large amounts of spam email traffic to extract other useful features

(Gomes et al., 2004; Jung and Sit, 2004; Hulten et al., 2004; Klimt and Yang,

2004).

EMT has much potential for specific email related tasks such as forensic
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studies and email search and the application of behavior modeling in other do-

mains. For example, although we have touched the surface of virus detection,

prior publications of using behavior models to catch virii have shown great promise

(Stolfo et al., 2003c). In addition, the type of analysis of the behavior of the user

can be directly applied to file types. Studying the behavior of file types might lead

to better virus detection.

The behavior models presented by this thesis can also be used to analyze

network behavior, when analyzing network information flows. Clique analysis has

been recently used at Columbia to both help find compromised hosts and attempt

to detect zero day worms (Sidiroglou and Keromytis, 2005). We hope to extend

some of the newer work of PET to this domain too.

In addition a straightforward analysis of instant message traffic can be an-

alyzed by the models presented in this thesis. We hope to be able to conduct a

study on some type of electronic messaging traffic in the near future. Preliminary

work was attempted but insufficient data has been a problem in the past.

The VIP ranking algorithm can be extended with other features, such as

including the length of a message over time into the formula. The value of au-

tomatically ranking importance can be applied to many other areas related to

electronic communication. With electronic devices playing multiple roles in every

day situations, organizing the attention of the user, and knowing when something

is important, is literally important. You do not want to bother the user during

a critical time, to let them know their gas bill is due. New proposals on how to

actually grab a user’s attention has been studied with mixed results (Zhang et al.,

2005) there is much to be done in this area.
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Many companies have become involved in research that has started to ex-

tend the basic email experience. For example Microsoft’s “Lifebits” tries to place

email communication in the context of other forms of electronic activity. Google’s

“Gmail” has allowed end users to keep all their old emails, by being the leader in

storage capacity and introducing new email features on a continuous basis. IBM

has worked on task extraction, task management, and client synchronization, all

deployed as features in their Lotus email client. Mozilla’s “Thunderbird” is de-

signed around allowing users to add multiple extensions easily into the system with

minimum overhead. All these systems now incorporate one or more forms of email

spam filtering technology, although with slightly different accuracy measurements

and qualifications. Each of these products represents an email base with many

thousands of users. Email’s evolution is a reflection on how the base users have

traditionally perceived its functionality. Email has moved from a novelty applica-

tion or electronic memo, towards a personal communication medium. New forms of

analysis and features will help email move beyond plain messages integrating itself

into the users electronic experience.

Other data mining techniques to study email have started to emerge as

researchers try to use email data as a seeding ground for knowledge discovery (Aery

and Chakravarthy, 2004; Dredze et al., 2006). Some of the machine learning theory

problems discussed in this thesis are part of a larger open problem set in the machine

learning domain. Especially the “False Positive” problem, which in the context of

spam detection we have used multiple models to effectively try to minimize the false

positive rates. This issue is a general machine learning problem, and any solution

will have wide reaching implications for furthering the state of the art. We hope to
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pursue research on this problem in the near future.

Our experience on working on EMT has shown us the importance of combin-

ing both a clean GUI design along with the ability to perform sophisticated analysis,

to create a useful tool. Finding the balance between information helpfulness and

information overload is a critical task especially when tasked to help the user focus

on what is the most important aspect of email: a personal communication tool.
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Appendix A

Screenshots

In this section we present screen shots of the implemented EMT and PET systems.
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Figure A.1: Main EMT window. Message views can be constrained by time (A),
users (B), folder source (C), types (D), and direction (E). Once viewed (G), they can
be clustered over some feature (F). Machine learning algorithms can be built and
evaluated (J) and labels manually or automatically adjusted (K). When a message
is selected (H) the preview is shown (I) and some usage history is also displayed
(L). Notice that either the inbound or outbound usage can be viewed here. Clicking
on any column re-sorts the messages in ascending or descending order.
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Figure A.2: Usage profile of an individual user. The user ’sh553@cs.columbia.edu’
past year of use is compared to the last 3 weeks of usage. The difference between
the two periods is calculated on the bottom, and judged to be ’normal’.
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Figure A.3: Given a specific user, we can find similar behaving users based on a
specific set of behaviors. In this case, we are comparing average emails using normal
histogram alignment, and L1-form comparison.
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Figure A.4: Keywords automatically extracted from a set of emails.
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Figure A.5: GUI window to analyze recipient frequencies. A specific user is chosen
(A) and we display an outbound profile. (B) A graphical ordering of most frequent
recipients, with the same data in tabular form (C). (D) displays the number of new
recipients over time, for normal users. One expects this to climb slowly over time.
(E) displays attachment analysis using Hellinger distance between different blocks
of data over time.
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Figure A.6: GUI window to view group cliques.
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Figure A.7: GUI window to analyze cliques in a graphical fashion.
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Figure A.8: GUI window to analyze attachments.
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Figure A.9: GUI window to analyze user cliques.
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Figure A.10: Email flow among users in the system. A specific user (A) is chosen,
and a specific subject is highlighted (B). Analysis can be done either by subject,
content, or attachment similarity (C). The results are displayed as a table (D) and
graphic (G). Specific message exchanges can be displayed by choosing the links
graphically or highlighting a specific table entry.
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Figure A.11: Email forensics window. Users can be specified by some level of
activity (A). Basic statistics can be viewed (B) and a main user can be selected
(here sal@cs.columbia.edu). The chosen user’s histogram is displayed (C) and a
VIP list can be displayed (D). Any VIP user can be compared visually (E) and
numerically (F). In addition all messages can be viewed in the message window for
a specific user or between a user and a specific VIP.
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Figure A.12: Email forensic window, report section. Reports can be loaded from a
file (A), saved to file (B), and manually created (C) using a specific name (D). Each
report item is associated with a report alert level red, yellow, green (high-low) (E).
The reports can be viewed and sorted in the main report section(F).
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Appendix B

Mail Parser

B.1 EMT Mail Parser

The EMT parser is written in Java, and can be used as a stand-alone application.

It can read MBOX, .dbx (Outlook Express), and .pst (Outlook) file formats.

The parser is called “EMTParser.java” and it converts email data to EMT

database format.

B.2 Data Format

Traditionally there have been many different formats to store email data. One

of the most popular has been the mbox format, which stores email in a flat text

file. The mbox format has been a popular choice on many UNIX and Linux type

environments. Many email servers store their email in this format.

On the Microsoft Windows platform the default mail client program called

Outlook Express, stores email in a binary encoded format with the file extension
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“.dbx”. The upgraded email client known simply as Outlook (with a year version,

e.g. Outlook2003), stores its files in a binary version with the file extension “.pst”.

B.3 Implementation

In the mbox format, email is stored as a 7-bit ASCII-encoded flat file. Each mes-

sage begins with a line starting with the word ’From ’ (’From’ + space) followed by

optional source address and optional date. If the word ’from’ appears in the begin-

ning of a line in the body, it is the client’s responsibility to append some character

so that the email data will not be corrupted. A message is supposed to end with a

blank line.

A message has two main parts. The header or envelope, contains tokens and

values separated by a colon (’:’). For example the date is encoded as follows: “Date:

Tue, 3 May 2005 09:05:01 -0400”. These header fields usually contain a minimum

of some standard set of values, such as subject, date, recipient, and sender but can

also include non required fields such as email client, priority flags, etc. There is not

any specific enforcement of what can be included in the header fields, and many

servers and clients typically will include maintenance flags as header fields.

The body of the message is either plain text or composed of multiple parts

with any binary data encoded as uuencoded format. Uuencoded converts binary

data into ASCII characters, by sliding a 3-byte window and adding 32, and out-

putting the ASCII values on the range of 32 to 95. Every group of 60 characters are

line-separated with a control code saying how many bytes on the particular line.

Additional control codes regarding the file name and file permission are appended

to the text (QMAIL, 2005).
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Many different email clients seem to implement the mbox rules more as a

very loose recommendation than a strict standard. This is because many clients

will try to recover partial email information and attempt to deliver malformed data.

In addition, clients do not replace the body ’from’ lines in a consistent fashion and

messages do not necessarily end with a blank line. Some clients implement their

own version of the first “from” line separator etc. Because of this, when comparing

the performance of the parser to any email client, we have attempted to follow the

standards.

B.3.1 Logic

The parser has been implemented with the following simple logic.

1. assume start of header.

2. while header items i.e. token colon space tokens or token colon space tokens

newline tab tokens

process specific header features.

3. if newline or non-header line assume the start of the email body.

4. while not start of a new header

append to the current body text.

5. else we are done with body, process email taking care to decode any mime

encoded or multi-part messages in a controlled recursive fashion.

6. GOTO 1.
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B.3.2 Arguments

• -n - This option tells the parser not to privatize any of the data.

• -folder - This option specifies that the folder name where the email data has

been collected should be hashed for privacy concerns.

• -i name - Specifies a specific input file to parse. If this is a directory the parser

will perform a recursive step through all the files in the directory and try to

parse them.

• -db dbname machine user password - Specifies the database to use, machine

name (example: localhost), user to access the database, and password for the

user.

• -log - The log argument creates a log file, showing each subject line and email

info of each record processed.

• -flush - The flush argument erases all current entries from the database before

adding any new ones.

• -s or -rs - These allow processing of files with one email per file. This is not

strictly MBOX format where each folder has its one file. The first flag allows

a single directory of emails to be processed, and the ”-rs” is a recursive call

to process multiple directories with multiple files in each.


