

Funneling-MAC: A Localized, Sink-Oriented MAC
For Boosting Fidelity in Sensor Networks

Gahng-Seop Ahn†, Emiliano Miluzzo‡, Andrew T. Campbell‡ Se Gi Hong†, Francesca Cuomo††

 †EE Dept., Columbia University ‡CS Dept., Dartmouth College ††University “La Sapienza”
 New York, NY, USA Hanover, NH, USA Rome, Italy

Abstract
Sensor networks exhibit a unique funneling effect which is a
product of the distinctive many-to-one, hop-by-hop traffic
pattern found in sensor networks, and results in a significant
increase in transit traffic intensity, collision, congestion,
packet loss, and energy drain as events move closer toward
the sink. While network (e.g., congestion control) and
application techniques (e.g., aggregation) can help counter
this problem they cannot fully alleviate it. We take a different
but complementary approach to solving this problem than
found in the literature and present the design, implementation,
and evaluation of a localized, sink-oriented, funneling-MAC
capable of mitigating the funneling effect and boosting
application fidelity in sensor networks. The funneling-MAC
is based on a CSMA/CA being implemented network-wide,
with a localized TDMA algorithm overlaid in the funneling
region (i.e., within a small number of hops from the sink). In
this sense, the funneling-MAC represents a hybrid MAC
approach but does not have the scalability problems
associated with the network-wide deployment of TDMA.
The funneling-MAC is 'sink-oriented' because the burden of
managing the TDMA scheduling of sensor events in the
funneling region falls on the sink node, and not on resource
limited sensor nodes; and it is 'localized' because TDMA
only operates locally in the funneling region close to the sink
and not across the complete sensor field. We show through
experimental results from a 45 mica-2 testbed that the
funneling-MAC mitigates the funneling effect, improves
throughput, loss, and energy efficiency, and importantly,
significantly outperforms other representative protocols such
as B-MAC, and more recent hybrid TDMA/CSMA MAC
protocols such as Z-MAC.
Categories and Subject Descriptors: C.2.2 [Computer
Communication Networks]: Network Protocols, Wireless
Communications
General Terms: Algorithms, Design, Experimentation.
Keywords: MAC, Wireless Sensor Networks, Funneling
Effect.

1. Introduction
Wireless sensor networks exhibit a unique funneling

effect [7] where events generated in the sensor field travel
hop-by-hop in a many-to-one traffic pattern toward one or
more sink points, as illustrated in Figure 1. This combination
of hop-by-hop communications and centralized data
collection at a sink creates a choke point on the free flow of
events out of the sensor network. For example, the funneling
of events leads to increased transit traffic intensity and delay
as events move closer toward the sink, resulting in significant
packet collision, congestion, and loss; at best this leads to
limited application fidelity measured at the sink, and at worst
the congestion collapse [15] of the sensor network. Other
drawbacks exist. The sensors nearest to the sink, typically
within a small number of hops loose a disproportionate larger
number of packets (we call this region of the funnel the
intensity region, as illustrated in Figure 1) and consume
significantly more energy than sensors further away from the
sink, hence, shortening the operational lifetime of the overall
network. Mitigating the funneling effect represents an
important challenge to the sensor network community and is
the subject of this paper.

Researchers have proposed distributed congestion
control algorithms [15], tiered network design [7], and data
aggregation techniques [16] [17] to respond to increased load
and congestion in sensor networks. But as the literature [15]
[7] indicates these techniques alone cannot fully alleviate the
problem because it is very difficult to effectively rate control
traffic at aggregation points or sources to match the
bottleneck conditions observed at the sink nodes. In this
paper, we show that the majority of packet loss in a sensor
network occurs within the first few or more hops from the
sink, even under light traffic conditions. We conjecture that
by putting additional control within the first few or more
hops from the sink we can significantly improve
communication performance and eradicate the funneling
effect.

We propose a localized, sink-oriented funneling-MAC
that explicitly recognizes the existence of funneling effect in
its design. While there have been a number of important new
MAC protocols proposed for sensor networks, to the best of
our knowledge none have addressed the funneling effect.
The funneling-MAC represents a hybrid (schedule-based)
TDMA and (contention-based) CSMA/CA MAC scheme
that operates in the intensity region of the event funnel, as
illustrated in Figure 1. Pure CSMA/CA operates network-
wide in addition to acting as a component of the funneling-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys'06, November 1-3, 2006, Boulder, Colorado, USA.
Copyright 2006 ACM 1-59593-343-3/06/0011...$5.00

MAC that operates in the intensity region. The funneling-
MAC mitigates the funneling effect by using local TDMA
scheduling in the intensity region only, providing additional
scheduling opportunities to nodes closer to the sink, which
typically carry considerably more traffic than nodes further
away from the sink. The funneling-MAC is sink-oriented
because the burden of managing TDMA scheduling of
sensor events in the intensity region falls on the sink node,
and not on resource limited sensor nodes. The funneling-
MAC is localized in operation because TDMA only operates
in the intensity region close to the sink and not across the
complete sensor field. The burden of computing and
maintaining the depth of the intensity region also falls on the
sink. We assume that the sink is likely to have more
computational capability and energy reserves than simple
sensors; however, the funneling-MAC does not rely on this
to operate efficiently. By using TDMA in this localized
manner, and putting more management onus on the sink not
the sensors, we offer a scalable solution for the deployment
of TDMA scheduling in sensor networks, one that is capable
of boosting application fidelity as measured at the sink, but
does not have the scalability problems associated with the
network-wide deployment of TDMA, which, we believe, is
untenable today as a network-wide deployment strategy for
large-scale sensor networks.

The structure of the paper is as follows. In Section 2 we
show the impact of the funneling effect using results from an
experimental sensor network. The effectiveness of existing
MACs to counter the funneling effect is discussed in Section
3. Following this, we present the detailed design of the
funneling-MAC algorithms in Section 4 that include: on-
demand beaconing, which both provides light-weight clock
synchronization for TDMA scheduling in the intensity region,
and regulates effectively boundary of that region; sink-
oriented scheduling, which computes and distributes new
schedules when needed in an efficient low cost manner; and
dynamic depth-tuning, which dynamically adjusts the depth
of TDMA operating in the intensity region with the goal of
maximizing the throughput of the sink choke point while
minimizing the packet loss in the funnel. The Appendix in
our technical report [23] provides important analytical
foundations that justify the choice of dynamically controlling

the depth of the intensity region in response to measured
traffic conditions at the sink node. We take an experimental
systems approach to the validation of the funneling-MAC’s
performance. Section 5 presents results from a number of
experiments using a 45 mica-2 mote network. We consider a
number of different node densities, and traffic characteristics
to study the performance of the funneling-MAC in
comparison to other representative protocols such as the
TinyOS [11] default protocol B-MAC [3], and more recently
proposed, and comparative protocol Z-MAC [10], which is
also based on a hybrid TDMA/CSMA approach. We show
by simply exerting control over the first few or more hops
from the sink that the funneling-MAC significantly
outperforms B-MAC and Z-MAC, which we show are not
capable of dealing with the funneling effect.

2. Funneling Problem
We begin by first quantifying the impact of the funneling

effect in a sensor network using the TinyOS CSMA-based B-
MAC protocol, the MintRoute routing protocol, and the
Surge application in a 45 mica-2 testbed. The network is
deployed as a 5x9 rectangular grid of equally spaced motes
in a large open room, making sure there are no interference
and near-field issues [12] during the experiments. The mote
at the bottom left corner operates as the sink in the grid, as
illustrated in Figure 4. Node spacing and transmission power
are set such that one-hop neighbors achieve > 80% delivery,
while two-hop neighbors achieve < 20% delivery. In this
way, a fairly strict and dense multi-hop radio environment is
constructed for experimentation.

We randomly select 16 of the 44 sensing nodes to
generate event rates ranging from 0.2-5 packets/sec (pps)
where the packet size is 36 bytes. The goal is to gradually
drive the sensor network from low to moderate load and then
into a congested and saturated state, while studying the choke
point throughput measured at the sink and the loss in the
network. Typically, events travel over multiple hops, 2-5
hops in the case of the experiment. Figure 2 shows the
resulting fidelity (i.e., throughput curve), as measured at the
sink as we increase the event rate of all 16 sources. Note that
we exclude the preamble and CRC sizes, and count the
packet size as 36 bytes when calculating the throughput
fidelity. We can clearly see that the throughput measured at

Figure 2. Throughput of
CSMA with varying data rates Figure 1. Funneling effect in sensor networks

choke point
intensity
region

sensors

sink

funnel pure CSMA

hybrid TDMA/CSMA

Figure 3. Loss rate and cumulative
distribution function of loss over varying
distance from the sink for CSMA

0

200

400

600

800

1000

1200

0.2 0.5 1 2 3 4 5 6

Data rate [packets/sec (pps)]

Th
ro

ug
hp

ut
 [b

its
/s

ec
 (b

ps
)]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Numer of hops from the sink

Lo
ss

 R
at

e
/ C

um
ul

at
iv

e
D

is
tri

bu
tio

n

Loss Rate 0.2 pps
Loss Rate 1 pps
Loss Rate 4 pps
CDF 0.2 pps
CDF 1 pps
CDF 4 pps

the sink rises to a peak of approximately 1100 bps before the
network falls into a congested and saturated state. Further
increase in source rate only drives the network into further
overload and eventual collapse with increasing load. We
observe from Figure 2 that source rates of 0.2 pps, 1 pps, and
4 pps can be considered to be light, medium (near optimal
load), and overload traffic scenarios, respectively. We use
these rates to further study the impact of the funneling effect
on loss distributions across the network. We consider the
overall loss rate in the network to be the number of packets
lost in the network divided by the number of packets
transmitted in the network. The overall loss rates measured
for increasing load are approximately 67%, 72%, and 95%
loss rate for 0.2 pps, 1 pps, and 4 pps, respectively. What is
surprising about these results in that at low load there is still
significant loss (67%), which rises to the point where 95% of
events transmitted in the network are lost at high load. This
also translates to significant energy waste. Such loss is
unacceptable for many applications and would quickly
deplete the sensors energy reserves. Note that in the case of
light and medium traffic scenarios, packet loss is mainly due
to collision and hidden terminal problem, whereas in the high
and overloaded traffic scenarios loss is due to buffer
overflow in addition to collision and hidden terminal
problem.

Next, we consider the distribution of the loss across the
hops in the network. The solid lines in Figure 3 show the loss
rate at the i-th hop (i.e., the number of packets transmitted
and lost by i-th hop divided by the number of packets
transmitted by i-th hop). The result clearly quantifies the
funneling effect for this experiment and shows its debilitating
impact on network performance. These results represent the
average of five runs of the same experiment and the 95%
confidence intervals. What is interesting about these results is
that Figure 3 clearly shows that there is increasing loss at
nodes closer to the sink, which is a product of the many-to-
one, hop-by-hop traffic pattern of the funneling effect. For
example, for all traffic rates the vast majority of packet loss
occurs in the first two hops from the sink and drops of
quickly for hops further away from the sink. These are
fingerprints of the funneling effect. Note, that even for a light
traffic load of 0.2 pps this trend is still dominant with
significant loss registered in the first few hops. These per-

hop loss rates for the low rate traffic explain why at such a
low rate we still can record an overall loss rate for the
network of 67%, as discussed above. The dotted lines in
Figure 3 show a cumulative distribution function (CDF) of
the per-hop losses. We can observe from the plot that
between approximately 80-90% of the losses across the three
low, medium, high rates happened within the first two hops
from the sink. We can conclude that funneling effect is
mostly invariant to source rate.

These results indicate that by adding addition controls
(e.g., scheduling) in the network over the first few hops
could offer significant gains across all traffic rates considered
in the experiment (viz. light, medium, heavy). We can also
conclude that even at low rates the CSMA-based B-MAC
cannot mitigate the funneling effect. These are important
insights. Therefore, we conjecture that new MAC approaches
other than B-MAC are needed to fully address the funneling
problem.

3. Related Work
In what follows, we discuss a number of sensor network

MAC protocols and traffic control mechanisms found in the
literature and comment on how they would fair in mitigating
the funneling effect discussed in the previous section.

S-MAC [1], T-MAC [2], B-MAC [3] and the MAC
discussed by Woo and Culler in [19] represent well-known
contention-based (CSMA) MAC protocols for sensor
networks. In [19] the authors discuss an early contribution to
sensor network MACs that uses adaptive rate control
mechanisms on top of CSMA to achieve energy efficiency
and fairness. This MAC [19] represents a network-aware
scheme like the funneling-MAC in the sense that it considers
route-through traffic when using rate control. S-MAC avoids
idle listening by putting sensor nodes to sleep periodically. S-
MAC requires time synchronization but the time-scale is
much larger than TDMA. T-MAC provides almost the same
functionality as S-MAC except that it is capable of further
reducing the idle listening by transmitting all messages in the
buffer of each node at the beginning of the active period,
allowing it to sleep instantly once the buffer is flushed. B-
MAC provides well-defined interfaces to low power listening
(LPL), clear channel assessment (CCA) and
acknowledgements. LPL improves the energy efficiency and
throughput with the cost of transmitting a long preamble by
sources. We show that B-MAC is not capable of mitigating
the funneling effect because of the large build up of losses in
nodes closer to the sink, as discussed in the previous section.
We conjecture that Woo’s MAC [19], S-MAC and T-MAC
based on similar contention-based approaches as B-MAC
would likely be as non-responsive and show the same poor
trends as B-MAC in dealing with the funneling effect.

There are several schedule-based (TDMA) MAC
algorithms proposed in the sensor network literature that do
better at mitigating the funneling effect. The energy-aware
TDMA-based MAC [4] achieves collision free access and
energy efficiency by assigning each node their own time
slots (listening slot and transmitting slot), allowing nodes to

beacon

62 ft

5f
t

Figure 4. Dartmouth College sensor testbed

sink

25
 ft

7 ft

D E A F

C G

B H

f-nodes

boundary of the intensity region

sensors

sleep when it is not their slot time. This approach [4] may be
impractical because the sink requires complete topology
information to compute the TDMA schedule and every node
requires precise time synchronization. Furthermore, from [4]
every node would need to communicate directly with the
sink (using high power). These issues indicate that the actual
implementation of such a scheme in a large sensor network
would have scalability problems.

Another TDMA protocol called TRAMA [5] performs
an adaptive election algorithm to overcome this drawback of
wasting time slots. TRAMA is a scalable distributed
algorithm where each node schedules time slots among its
two hop neighbors using a neighbor protocol and schedule
exchange protocol as discussed in [5]. One drawback of
implementing TRAMA in a mote network (no current
implementation exists for TinyOS, as far as we are aware) is
that the overall signaling overhead of these fairly
complicated protocols may present scalability problems,
particularly if implemented in a large-scale testbed. There are
a number of other TDMA-based algorithms found in the
literature [6] [8] [9] (but not implemented in mote networks)
that suffer from similar problems when targeted toward
large-scale sensor deployment because of the need for global
network-wide schedule computation and distribution, and
time synchronization.

The most suitable protocol for potentially mitigating the
funneling effect that is available in source code for mica-2
motes is the Z-MAC protocol. Z-MAC [10] is a hybrid
protocol that acts like a contention-based protocol under low
traffic conditions and a schedule-based protocol under high
traffic conditions by using the schedule computed by
DRAND (Distributed RAND) as a hint. DRAND is a fairly
complex coloring algorithm to explain here in detail,
sufficient too say that it allocates time slots to every node
ensuring that no two nodes among a two-hop neighborhood
are assigned to the same time slot by broadcasting the
TDMA schedule of each node to its two hop neighbors. Z-
MAC reduces the hidden terminal problem by not allowing
two nodes in two-hop distance to transmit at the same time.
In order to improve utilization, Z-MAC allows ‘non-owners’
of a slot to contend for the slot if it is not being used by its
‘owner’. Z-MAC requires global time-synchronization in the
initial phase, and then it performs local synchronization by
sending periodic sync packets between nodes. Z-MAC
requires that DRAND is run at startup to set up the TDMA
schedule, which may be a heavy burden for light-weight
sensor devices. The message complexity of DRAND is O(δ),
where δ is the local neighborhood size of each node while
the message complexity of the funneling-MAC (detailed in
the next section) is O(1). Because of the overhead of running
DRAND, the Z-MAC authors do not recommend that it be
run periodically. We choose to compare the funneling-MAC
to Z-MAC in the experimental evaluation section (Section 5).
We note in those experiments that Z-MAC is susceptible to
“schedule drift” (i.e., when the schedule allocated by
DRAND to nodes drifts out of sync because of various time

varying radio impairments). We discuss these issues and
show that, while Z-MAC offers scheduling support, it is not
designed to schedule more traffic at nodes closer to the sink
in its current form, and therefore, cannot mitigate the effects
of funneling events to a sink choke point. Because of the
potential for schedule drift, Z-MAC’s performance ends up
degrading to being only marginal better than B-MAC under a
number of experimental scenarios, as we discuss in Section 5.

Flexible Power Scheduling (FPS) [20] also represents a
hybrid approach that provides coarse grain scheduling that
computes radio on/off times, and fine grain MAC control for
channel access. The coarse grain scheduling of FPS
represents a distributed approach where each node schedules
its own children. The funneling-MAC and Z-MAC have
some similarities to FPS. However, FPS is limited when
dealing with the funneling effect because it does not prevent
nodes with different parents from using the same slot. FPS
simply relies on CSMA to provide collision avoidance in this
case.

In [7] the authors propose to add multi-radio virtual
sinks to sensor networks as a means of dealing with loss at
the physical sink. Virtual sinks address the funneling effect
by adding more ‘capacity’ in an on-demand manner to the
network using network layer routing to redirect traffic off the
primary mote radio network (reducing the funneling effect
on the physical sink) and onto an overlay network. While
virtual sinks are effective they require specialized multi-radio
nodes and an overlay network to siphon packets off the
primary network. In addition, virtual sinks themselves can
experience a mini-funneling effect [7].

4. Funneling-MAC Design
We now discuss the detail design of the funneling-MAC

algorithms, and issues related to timing and framing.

4.1 On-Demand Beaconing
The funneling-MAC localized TDMA is triggered by a

beacon broadcast by the sink. All sensor nodes perform
CSMA by default unless they receive a beacon and are then
deemed f-nodes. The sink regulates the boundary of the
intensity area (see Figure 4) by controlling the transmission
power of the beacon. The dynamic depth-tuning algorithm
discussed in Section 4.5 determines this transmission power.
The sink then transmits the beacon message at the computed
transmission power. The nodes that received the beacon
consider themselves to be in the intensity region and f-nodes.
These nodes can perform TDMA while the nodes that do not
receive the beacon (e.g., those nodes outside the intensity
region) perform CSMA.

F-nodes need to synchronize their clock to perform
TDMA but the funneling-MAC does not rely on any
synchronization protocol. If a network synchronization
protocol is present then the funneling-MAC can use that and
further minimize its active beacon signaling. However, in our
implementation of the funneling-MAC we do not assume this
and integrate a light-weight clock synchronization scheme
embedded in the beacon messaging. Therefore, f-nodes rely

on the beacon sent to activate TDMA and regulate the
boundary of the intensity region for clock synchronization.
As soon as a node receives a beacon, it becomes an f-node
and synchronizes with other f-nodes by initializing its clock.
The propagation delay of a beacon is on the scale of
microseconds in wireless sensor networks while the accuracy
of synchronization required for the funneling-MAC is on the
scale of milliseconds, so beacon-based synchronization can
keep the synchronization tight enough to perform TDMA
scheduling. Because the beacon is broadcast across the
complete intensity region then all f-nodes receive the beacon
at the same time and are tightly synchronized. This is a
similar approach to reference-broadcast synchronization [21]
but much simpler.

The beacon packet contains a small number of control
fields including the beacon interval, superframe duration,
and the TDMA duration. The superframe duration and
TDMA duration are explained in Section 4.3 on framing.
The beacon is sent periodically every beacon interval
specified in the beacon packet. Experimentally we set the
beacon interval so it is responsive to possible changes in
routing, traffic rates, and clock drift of f-nodes. The beacon
interval is determined by taking into account the accuracy of
the local clock of the motes and required accuracy of the
synchronization, as discussed in Section 5.1.

The beacon is sent only when it is necessary and in an
on-demand basis. The beacon is not sent when the network is
idle or receiving very low traffic. Note that every f-node
keeps a timer that expires if the f-node does not receive a
beacon for a period longer than the beacon interval. When
the timer expires, the node performs pure CSMA. As soon as
the sink receives a sufficient amount of data packets as
determined by a change in the weighted moving average of
the traffic (measured at the sink) from all paths then it begins
to transmit a beacon periodically, based on the computed
beacon interval. Conversely, if the sink does not receive
sufficient traffic to allocate slots in the network in one or
more beacon interval times, then it stops sending beacons
until the sink registers such a positive change. F-nodes use
the beacon interval to synchronize with future beacon
transmissions from the sink. A mote based beacon interval
timer allows motes to defer from transmitting when a beacon
is due which could potentially interfere with the beacon if
left unregulated.

When the sink starts beaconing at start-up or just after an
idle period, it starts with the minimum transmission power
(i.e., the same transmission power as ordinary sensor nodes).
This is because the depth-tuning algorithm (as described in
Section 4.5) uses an incremental increase/decrease rule when
calculating the beacon/schedule transmission power.
Gradually the sink will increase the transmission power as
the measured traffic increases and the throughput/loss
objectives are met (as addressed in Section 4.5) using the
dynamic depth-tuning algorithm. Conversely, if the sink was
to send the beacon not at the minimum power as discussed
but rather high transmission power from start-up or after an

idle period, then the beacon would likely interfere with
contention based incoming CSMA data packets. This is
because motes in a start-up state or just after an idle period
are not aware when a beacon will be transmitted. This
problem is resolved by the funneling-MAC because the
starting point for the dynamic depth-tuning algorithm is
always the same as the common default power used by motes
(which is considered to be the power floor for the depth-
tuning algorithm). Hence, the impact of interference is
minimized. Since the objective of the tuning algorithm is to
increase the depth of the intensity region and therefore the
transmission power there is a case that nodes not reachable
by the existing power level will be interfered with when the
tuning algorithm increments the beacon transmission power.
The funneling-MAC resolves this potential interference issue
by introducing a ‘meta-schedule advertisement’, which is
discussed in Section 4.4.

Our design goal is to limit the cost of supporting
periodic beacons by making them on-demand. One other
parameter we consider is to extend the beacon interval to
trade off signaling overhead, the reception power used by
motes in the existing intensity region, and reduce the energy
demands on the sink. We introduce the notion of ‘lazy
beaconing’, which pushes out the optimal beacon interval
that is used to maintain tightness of clock synchronization
and slot scheduling at f-nodes. By pushing out the beacon
interval in this manner there can be some performance
penalties if left unbounded. In Section 5.1, we discuss the
optimal beacon interval used to maintain tight
synchronization and slot scheduling, and optimal throughput,
and contrast this to lazy beaconing which allows us to triple
the optimal beacon interval for only a small reduction in the
performance of the network, as measured by sink fidelity.

4.2 Sink-Oriented Scheduling
The sink monitors the traffic that arrives at the sink on a

per-aggregated-path basis, calculates the TDMA schedule
based on the monitored traffic (initially based on only new
CSMA events and thereafter including existing TDMA
traffic) for all paths, and distributes the schedule by
broadcasting a schedule packet at the same transmission
power used by beaconing. We define an aggregated path as
a path which results from the merge of two or more paths at
or before entering the intensity region. The funneling-MAC
treats an aggregated path as a single path entry. For example
in Figure 4, the funneling-MAC keeps information
associated with paths G-B-F-E-D and H-B-F-E-D as a single
aggregated path entry B-F-E-D. The funneling-MAC scales
well because the number of aggregated paths entering the
intensity region is bounded by the number of nodes in the
intensity region. We use the term path to indicate aggregated
path in the remainder of the paper for convenience. In what
follows, we provide a detailed discussion of sink-oriented
scheduling. See [23] for the pseudo code of the algorithm
that is not presented in this paper because of space limitations.

In order to compute the schedule the sink needs to
determine the identity of the path-head f-nodes and the

weighted average of the traffic on the path in order to
correctly schedule the path. The concept of a path represents
the direction taken by a train of events from a path-head (e.g.,
mote A in Figure 4) on a hop-by-hop basis along a route (e.g.,
determined by the TinyOS MintRoute routing protocol in our
experiments) to the sink (e.g., path A-F-E-D-Sink). The sink
measures the weighted moving average of each path and
allocates slots according to an allocation rule, which we
discuss below. In order to enable the sink to acquire this
information the funneling-MAC reserves 3 bytes in the
packet header called the path information field. The path
information field is only updated by the f-nodes along a
certain path in the intensity region. The sink gathers this
information from incoming packets on a per-path basis for all
paths in the intensity region. The path information field
contains the path head id (2 bytes) and the number of hops (1
byte). The path-head lies near the intensity region boundary
where the path head id equals the node id of the path-head,
and the number of hops field reflects the number of hops the
packet traverses on the path between the path-head and the
sink. For example in Figure 4 if a packet generated from
outside of the intensity region is received by node A, node A
forwards the event packet toward the sink following the path
A-F-E-D-Sink. In this simple example, the path head id is A,
and the value of number of hops is 4. Importantly, node A
identifies itself as the path-head when it receives a data event
packet with a value of the path information field set to zero.
In addition, source nodes inside the intensity region identify
themselves as a path-head when they generate a new packet.
A path-head puts its id in the path head id field and a value 1
in the number of hops field. All f-nodes along the path
increment the value of the number of hops field by 1 when
they forward the event data packet. Consequently, each
packet that arrives at the sink carries the path head id of the
path it traversed as well as the number of hops.

The sink monitors incoming data packet and keeps track
of incoming traffic rate for each path along with the path
head id and number of hops. The sink keeps the traffic rate
on a per path basis in the path table. The sample period is one
superframe (as defined in Section 4.3) and the sink measures
the number of incoming packets in one superframe per path.
Then, the sink calculates the weighted moving average of the
measured traffic rate per path.

The sink computes the schedule by allocating time slots
per-path rather than on per-node basis. This is because the
sink only has the information about the paths and not about
the nodes in the paths. This makes the scheme scalable and
not coupled to any tree generated by a particular routing
scheme; that is, the schedule computation operates on a
simple path abstraction of path-end and hop count and not
topological routing information. Therefore, the funneling-
MAC is agnostic to the routing scheme or routing tree
formations. The sink stores per-path state information in a
path-table, which is indexed using the path-head id, per-path
measurement statistics are also maintained in this table. Each
entry contains a path head id, number of hops, and incoming

rate. The incoming rate represents the number of packets
each path should carry during one superframe. Note that the
sink ages each entry every beacon interval and if the table
overflows the sink replaces the oldest entry with a new entry.

Slot Allocation Rule: The sink allocates slots to each
path using the information in the path table. For example,
assume that the traffic rate of a path is k and the number of
hops of the path is h. The sink should allocate every node in
the path with k slots so the sink allocates hk × slots to
the path. If the traffic rate of a path is less than 1, the sink
does not follow the above rule, instead, the sink allocates 1 х
h slots to the path. The traffic rate can be less than 1 in the
case where periodic traffic with data generation rates of less
than 1 packet in one superframe or in the case where event-
driven traffic happens. As shown in Section 2, the funneling
effect is active under light traffic load conditions as well at
increased loads so there is a need to schedule paths that have
a traffic rate less than 1. If the traffic rate of a path is low, the
sink should allocate the minimum number of slots to such a
path. The minimum number of slots that the sink can allocate
to a node is 1 slot. Therefore, the sink should allocate every
node in the path 1 slot so the sink allocates 1 х h slots to the
path. This rule turns out to be good because the testbed
evaluation result in Section 5.5 show that the funneling-
MAC improves the throughput in light traffic scenario
compared to pure CSMA.

Simple Spatial Reuse: To enhance the throughput
inside the funnel area, the sink considers spatial reuse. It is
very difficult to design an optimal spatial reuse scheme
without having the complete physical topology information
of the network. However, the sink can compute sub-optimal
spatial reuse using only the per-path number of hops state
information. The funneling-MAC takes this simple sub-
optimal approach and reuses the same slot if two nodes are
more than 2 hops away from each other. In this case, f-nodes
are unlikely to interfere because one of the nodes may back
off due to the fact that in the funneling-MAC carrier sensing
is used even for the scheduled access. For example in Figure
4, the f-nodes A or B can share the same slot with f-node D
because they are 3 hops away. In this case, sink based
schedule computation allows f-node B to start transmission
three slots after f-node A’s slot (i.e., at the slot which belongs
to f-node D). As a result, the computed schedule is as
follows: 3 slots are allocated to the path A-F-E-D, and 4 slots
to path B-F-E-D.

Once the sink computes the schedule, it broadcasts a

schedule packet for all paths in its path-table immediately
after the next beacon. The sink transmits the schedule packet
using the same power level that the sink uses for the beacon
so all f-nodes in the intensity region are likely to hear the
schedule. Because new schedules are not typically sent each
beacon interval the sink sets a schedule expected bit in the

Header A ; 3 B ; 4 C ; 3

Figure 5. Schedule packet structure

beacon header. The payload of the schedule packet contains
the path head ids of the scheduled paths and the number of
slots allocated to each path, respectively. This resulting per-
path schedule is stored in a tuple [path head id (2 bytes),
number of slot (1 byte)] in the packet payload. For example
in the simple schedule packet shown in Figure 5 all f-nodes
are informed that there are 3 active paths scheduled in the
intensity region and that the 3 paths are allocated, 3, 4, and 3
slots, respectively. F-nodes receive the schedule packet and
figure out which slots are assigned to them. Each f-node
keeps a table where it stores the path head node ID of each
path going through it and the number of hops to the path
head when they forward data packets. Using this table, the f-
node can compute which slots are allocated to itself. For
example, the entries of {path-head id, number of hops}
maintained by the node E are {A, 2} and {B, 2} so the node
E understands that it can transmit two slots after A’s slot and
two slots after B’s slots.

4.3 Timing and Framing Issues
Once f-nodes receive a schedule packet, they

synchronize their communication to the funneling-MAC
framing structure, as illustrated in Figure 6. F-nodes transmit
their scheduled packets at their allocated slots times in the
TDMA frame. To enhance the robustness and flexibility of
the funneling-MAC, a CSMA frame (random access period)
is reserved between two consecutive TDMA frame
(scheduled access period) schedules, and carrier sensing is
performed even for scheduled transmissions. The
combination of a TDMA and CSMA frame forms what we
call a superframe. Several superframes are repeated between
two beacons, as illustrated in Figure 6, where a schedule
packet typically follows a beacon.

The aim of the CSMA frame is to allow for the
transmission of event data packets that are generated by
sensors but have not been allocated slots to be scheduled yet.
Other scenarios arise: management, routing, and event data
from new nodes that suddenly require transport. One other
scenario that is commonly experienced in our testbed is new
event data appears on a path due to route changes that occur
due to radio vagaries. The sink detects these events using its
traffic measurement algorithm. Another reason we always
offer some CSMA access in the intensity region is to support
the transmissions of asynchronous management and control
packets such as routing, hello messages, and packet
retransmissions for event data packets that are not
successfully transmitted during the TDMA frame. Note that
the retransmission policy is only an optional part of the
funneling-MAC that can be activated should link reliability
be required.

The beacon delivered to f-nodes includes all the
necessary frame timing information for the f-nodes to
correctly schedule their traffic or contend for the CSMA
access in a superframe. Note that from Figure 6 the
superframe duration is fixed while TDMA duration changes
dynamically. The superframe duration has no significant
impact on the performance because the sink adapts the
schedule to the superframe duration. The sink measures the
incoming traffic every superframe and computes the
schedule based on the results of sampling process, as
described in Section 4.2. The TDMA duration changes when
the sampled traffic rate at the sink changes. If the traffic load
increases sufficiently, the sink allocates more slots in a
superframe so that the TDMA duration grows and more
events get scheduled in the intensity region. The portion of a
superframe that is not used by TDMA is allocated to the
CSMA frame. In our implementation, we limit the maximum
ratio of TDMA/CSMA in a superframe to 80% so that at
least there is a minimum allocation of CSMA to support
control packets and unscheduled data packets, as discussed.

The funneling-MAC improves robustness by performing
carrier sensing even for scheduled transmissions to avoid
possible collisions in transmission anomalies such as in the
presence of nodes inside the intensity region that do not
receive beacons nor meta-schedule advertisements, as
discussed in Section 4.4. Finally, in terms of framing we note
that the funneling-MAC uses the low power listening (LPL)
algorithm and preamble technique proposed in B-MAC [3] to
reduce energy consumption for sensor networks with low
duty cycle. However, unlike B-MAC f-nodes do not need to
transmit a long preamble in the LPL mode because their
communications are synchronized by the superframe. This
frees f-nodes to use the standard short radio preamble.
During TDMA access f-nodes wake-up at the beginning of
their scheduled listening slot and in the case of CSMA frame
f-nodes wake-up periodically based on the wake up periods
suggested in [3]. During CSMA access, f-nodes can transmit
with the standard preamble because all f-nodes can wake-up
and listen at the same time. The nodes outside the intensity
region use the long preamble used in the LPL mode before
transmitting a data.

4.4 Meta-Schedule Advertisement
A number of MAC interference issues arise with the

funneling-MAC due to its hybrid MAC nature and its
broadcasting of sink signaling (i.e., beaconing, schedules) at
potentially high power over the complete intensity region. In
order not to interfere with any on-going sensor
communications in the network (e.g., CSMA forwarding
between sensors toward the sink) by such a high power sink
transmission, nodes must be capable of learning the
superframe timing details from beacon messages. Another
interference issue arises where nodes inside the intensity
region may not receive beacons (e.g., due to fading,
asymmetric links, etc.) and therefore can become potential
“interferers” by not having the timing and framing
information carried in the beacon. One final scenario can

 CSMA CSMA

beacon

t

 TDMA

beacon

Figure 6. Framing

 superframe
 TDMA

 schedule

 …

occur where nodes outside of the boundary of the intensity
region may not be aware of the funneling-MAC frame timing
because they do not receive beacons, and as a result, also
represent potential interferers. To deal with these interference
scenarios (i.e., between scheduled and random access
transmissions) the funneling-MAC embeds a low cost meta-
schedule advertisement in the first event data packet
transmitted by f-nodes, after a new schedule is received.

All f-nodes that received the beacon and schedule
embed the meta-schedule in the first event data packet
transmitted toward the sink every beacon interval. The mini-
schedule contains the following information: superframe
duration, TDMA duration, time left of the current TDMA
frame, and number of superframe repetitions before the
beacon interval expires. The meta-schedule is only 4 bytes in
length.

Nodes that are either inside the intensity region and miss
a beacon or outside the intensity region but near the
boundary can overhear the transmission of meta-schedule
carried in a data event. Reception of a meta-schedule allows
these nodes to transmit in the CSMA portion of the current
superframe mitigating the likelihood of interfering. Now,
let’s consider a case when an intermediate node of a path
inside the intensity region misses a beacon. For example,
node F in Figure 4 misses a beacon while the path A-F-E-D
is scheduled. The path-head f-node A sends a data packet
with meta-schedule and node F receives the data packet with
meta-schedule. This way, node F can determine that the data
packet is scheduled at the current time slot so node F
transmits the data packet immediately. Node F uses CSMA
frame for its other data packets. Now, let us assume the path
A-F-E-D is not yet scheduled and the path-head f-node A
transmits a data packet with its path information field using
CSMA frame. Node F receives the data packet with path
information field and node F updates the number of hops
field and forwards the data packet so the sink can still
schedule the path A-F-E-D. Therefore, the meta-schedule
advertisement allows seamless interoperation between
TDMA inside the intensity region, and CSMA operating
outside of that region. The use of meta-schedules in this
manner resolves potential erroneous behavior.

4.5 Dynamic Depth-Tuning
The dynamic depth-tuning algorithm enables the

funneling-MAC to maximize the throughput and minimize
the packet loss at the sink point. The sink regulates the
boundary of the intensity area where TDMA is performed by
controlling the transmission power of the broadcast beacon.
The sink can dynamically change the transmission power of
the beacon and therefore the area in which TDMA is active
by determining the optimal depth d of the intensity area in
the funnel. We analytically analyzed how the funneling-
MAC should determine the optimal depth of the intensity
region. Due to space limitations, we do not include the
analysis here (see the Appendix in [23] for the details on the
analysis). The Appendix in [23] provides a number of
valuable insights that motivate the operations of dynamic

depth-tuning algorithm. In [23] it is shown that the optimal
value of d to maximize throughput and minimize packet loss
can be determined at the sink. This result drives the design of
the dynamic depth-tuning algorithm. Based on the analysis in
the Appendix [23], we propose the following dynamic depth-
tuning algorithm. Suppose that A is the total number of slots
scheduled, Amax is the number of the maximum available slots
in one superframe, and that dmax is the upper bound of the
depth d; then the sink chooses d=1 when the network is
saturated, that is, where A>Amax even with d=1, and if the
network is not saturated, then the sink gradually increases d
while A<Amax and stop increasing d when A>Amax or d>dmax.
Since the depth is controlled by the transmission power of
beacon signal at the sink, there is an upper bound dmax that
matches the maximum transmission power available at the
sink. We verified in [23] that when A=Amax, the depth is at
the optimal point where the network achieves both the
maximum throughput and minimum loss. This analytical
result justifies our approach of adjusting the power to reach
that optimality.

The actual operation of dynamic depth tuning algorithm
is as follows. When the sink starts up, it chooses the
transmission power as ordinary sensor nodes operating in the
network – this is where all the motes and sink use a common
power. The sink monitors the channel and computes the
schedule with size A as discussed in Section 4.2. At this point,
two different cases may occur: either A≤Amax or A>Amax. If
A>Amax, then the sink does not increase the transmission
power for the next beacon transmission. If A<Amax, then the
sink increments the transmission power of the next beacon
by one power level and monitors the performance of channel.
The sink keeps incrementing the transmission power in this
manner until A>Amax or the transmission power reaches its
device-limited maximum. If A>Amax, then the sink
decrements the transmission power of the next transmitted
beacon by one level. If the transmission power reaches the
maximum and A<Amax, then the sink keeps the transmission
power at the maximum. The sink performs this dynamic
depth-tuning algorithm on a continued basis, regulating the
beacon transmission power accordingly. The pseudo code for
dynamic depth-tuning algorithm is presented in [23].
5. Sensor Testbed Evaluation
 We take an experimental approach to the evaluation of
the funneling-MAC and present a number of experiments
that give insights into the performance tradeoffs of the
protocol under a wide variety of systems conditions, e.g.,
different traffic conditions, different mote topologies and
densities (from simple benchmarks to more realistic dense
grid), and compare the performance of the funneling-MAC
to the baseline TinyOS B-MAC protocol and the Z-MAC
[18].

5.1 Experimental Set-up
We implement the funneling-MAC on mica-2 motes

using the default TinyOS [11] MintRoute routing protocol
and Surge applications to drive different source rates. The bit

rate of the radio interface for mica-2 motes is 19.2 kbps. Our
experimental testbed comprises of a 45 mote dense grid
deployed in a large laboratory room and is configured, as
shown in Figure 4 unless specified otherwise. Node spacing
and transmission power of the sensors are set such that one-
hop neighbors achieve > 80% delivery, while two-hop
neighbors achieve < 20% delivery. In this way, a fairly strict
and dense multi-hop radio environment is constructed for
experimentation. We use the default TinyOS packet size,
which is 36 bytes.
 We implement the funneling-MAC on B-MAC, which
provides the baseline CSMA system. Note, that we do not
use fixed routes as in [10] because we are interested in how
well the protocols under comparison, B-MAC, Z-MAC, and
the funneling-MAC performs in a realistic networking
scenario where time-varying radio conditions can impact
coverage, link quality, and routing paths. For B-MAC and Z-
MAC, we use the default settings described in [3] [10],
respectively. The parameter settings of the funneling-MAC
are presented in Table 1. The settings that are not specified in
Table 1 are the settings used in [3] as the funneling-MAC is
built on top of B-MAC. For all experiments, we turned off
the low power listening and use the same preamble size for
B-MAC, Z-MAC, and the funneling-MAC for fair
comparison. We adjusted the data transmission power of
sensor nodes at -10 dBm in order to build up a strict multi-
hop network (up to 5 hops), as discussed in Section 2. The
funneling-MAC dynamically tunes the power of beacon and
schedule at the sink node from -10 dBm to 5 dBm (i.e., the
maximum transmission power of the CC1000 transceiver
[13]) in increments or decrements the power of 1 dBm which
is the unit power level, as reported in [13].

Table 1. Funneling-MAC experimental parameters

Parameter Value
Default data transmission power (Cdata) -10 dBm
Beacon and schedule transmission power (Ccontrol) -10 ~ 5 dBm
Step size of power for dynamic depth-tuning (Cunit) 1 dBm
Beacon interval (tb) 20 sec
Superframe size (tf) 1 sec
Slot size (ts) 30 msec
Moving average factor (α) 0.9

The beacon interval is initially computed based on the
mote’s clock accuracy and the required accuracy of
synchronization for scheduling on the media. We run some
experiments with various values for the beacon interval and
we experimentally determine a beacon interval of 20 seconds
gives the best performance in terms of throughput with the
necessary accuracy. We also experiment with lazy-beaconing
where we trade performance for a larger beacon interval. We
observed that we can push the beacon interval out to 50
seconds with only a marginal drop in throughput
performance. However, for beacon intervals greater than 50
seconds we register a sharp reduction in throughput
measured at the sink of approximately 30%, showing that the
loss of scheduling accuracy and schedule drift is too costly
for the further reduction in signaling overhead. For the

experiments reported in this section we chose a beacon
interval of 20 seconds for increased scheduling accuracy and
to remove any likelihood of schedule drift. Table 1 shows the
set of experimental parameters for the funneling-MAC
testbed that are consistently applied across all experiments.

5.2 Impact of Depth-Tuning
We are interested in evaluating the impact of the depth of

the intensity region on the measured throughput of the sensor
network testbed for the following reasons. First, in order to
verify that by pushing the TDMA area (i.e., the intensity
region) beyond the optimal depth will only degrade in
measured throughput at the sink. Second, to show that the
dynamic depth-tuning algorithm is valid when implemented
in a real sensor testbed. To compare dynamic depth-tuning to
the simple case of just scheduling the last hop (i.e., one hop
from the sink) we fix the dynamic depth-tuning algorithm to
one hop only. Note, that the results in Section 2 indicate that
most packet loss occurs over the last hop to the sink.
Following this logic, we consider a ‘baseline algorithm’ as
having a fixed depth of one, which only schedules the last
hop, and an ‘optimized algorithm’ that schedules additional
hops using the fully enabled dynamic depth tuning algorithm.
In what follows, we show that the optimized algorithm
achieves considerably better performance than the simple
baseline algorithm does.

 In order to observe the impact of depth on performance,
we fix the beacon transmission power to the values of -10, -8,
-6, -4, 0, and 4 dBm, respectively. The depth of the intensity
region is an approximate function of the beacon transmission
power used. In essence, we can approximate the depth in
terms of the beacon transmission power coverage distance in
terms of number of hops from the sink for our grid network.
For example, if the sink transmits a beacon using the default
transmission power of ordinary sensor nodes, this will
approximate coverage of one hop from the sink. Likewise,
we can expect that a beacon will have a greater coverage
than one hop for higher transmission powers. The metric that
we observe with each beacon power setup is the throughput.
We define the choke point throughput of the sink as the
amount of data in terms of bits received at sink over a 1
second period. In these experiments, all 44 nodes are sources.
We run experiments for 3 different source rates low, medium,
high: 0.2 pps, 1 pps, 2 pps, respectively.

We plot the results in Figure 7. For each of the source
rates we measured the sink throughput for increasing beacon
power (which approximates the depth of the intensity region
coverage). The result indicates that there is an approximation
of the optimal transmission power for beacons (i.e., optimal
depth) that maximize the throughput such that if we use a
larger transmission power than the optimal power, the
throughput measured at the sink degrades. This means that if
we increase the TDMA area further the optimal depth by
using more power then it degrades the measured throughput.

Figure 7 validates the dynamic depth-tuning algorithm.
According to the analytical result in the Appendix in [23],
the optimal depth is close to 1 hop (i.e., the beacon

transmission power is the same as the motes data event
transmission power) when the network is saturated, while the
optimal depth is greater than 1 hop when the network is not
saturated. In fact, if we set the source rate to 2 pps, which
drives the network toward saturation, the optimal beacon
transmission power from our experimental result is -8 dBm,
which provides radio coverage close to 1 hop (i.e., the mote’s
data event transmission power of -10 dBm). We observe in
Figure 7 that the optimal depth is greater than 1 hop when the
network is not saturated (i.e., 0 dBm for 1 pps, and 4 dBm or
greater for 0.2 pps). These experimental observations
validate the analytical observation in [23] and thus provide a
sound basis for the dynamic depth-tuning algorithm.

In what follows, we quantify how much gain the
baseline and optimized algorithms can achieve over B-MAC.
From Figure 13(c), we can observe that the throughput of B-
MAC for 0.2 pps, 1 pps, and 2 pps source traffic rates is 272
bps, 1099 bps, and 1631 bps, respectively (we discuss this
plot further in Section 5.5). The throughput related to the -10
dBm x-axis value in Figure 7 (i.e., 1583 bps for 2 pps, 1511
bps for 1 pps, and 645 bps for 0.2 pps) represent the
performance of the funneling-MAC’s baseline algorithm that
schedules only the last hop with the depth fixed by -10 dBm
beacon power. The throughput shown in Figure 7 at the
optimal beacon transmission powers (i.e., 1872 bps at -8
dBm for 2 pps, 1925 bps at 0 dBm for 1 pps, and 1191 bps at
4 dBm or greater for 0.2 pps) represent the performance of
the funneling-MAC’s optimized algorithm (i.e., when
dynamic depth-tuning is fully enabled). The gain over B-
MAC for the baseline algorithm with 0.2 pps, 1 pps, and 2
pps is 124%, 37%, and 0%, respectively. The gain over B-
MAC for the optimized algorithm with 0.2 pps, 1 pps, and 2
pps is 338%, 75%, and 15%, respectively. For all source
traffic rates (viz. 0.2 pps, 1 pps, and 2 pps) the optimized
algorithm performs better than the baseline algorithm. More
importantly, the baseline algorithm does not achieve any gain
over B-MAC when the source rate is 2 pps. This result
indicates that the baseline algorithm provides some gain that
may be sufficient for simple low complexity deployments
(i.e., schedule only the last hop) but the optimized algorithm
provides considerably better performance despite that the
optimized algorithm comes with some added complexity
over the baseline algorithm. As a result, we recommend

using dynamic depth-tuning in its fully enabled form as a
default.

5.3 Impact of Boundary Node Interference
In what follows, we show that the meta-schedule

advertisement is effective at dealing with the interference
scenarios discussed in Section 4.4. We study the impact of
abruptly changing the depth of the intensity region on
boundary node behavior and the measured sink throughput
performance. In this experiment meta-schedule
advertisements exploit the broadcast nature of the radio
medium, where nodes receive the embedded meta-schedule
simply by overhearing data event packets with embedded
meta-schedules sent by neighboring nodes. The use of meta-
schedule allow for the co-existence of TDMA inside the
intensity region and pure CSMA outside that region.

We evaluate the behavior of nodes at the boundary of the
intensity region for some interfering scenarios. We set up an
experiment that studies the impact of boundary variability. In
this experiment the sink changes the beacon transmission
power for every beacon by selecting the transmission power
between two values in turn. We choose the two beacon
transmission power values -6 dBm and -8 dBm such that the
boundary of the intensity region falls approximately across
the center of the grid testbed where there is a higher density
of nodes that will be included in TDMA scheduling (at -8
dBm) and then dropped out (at -6 dBm) as they fall outside
of the intensity region and operate without the framing and
timing information, as shown in Figure 4.

We run the experiment of switching between -6 dBm and
-8 dBm for a number of different source data rates. Figure 8
shows the various source rates and the corresponding
throughput performance measured at the sink. This is for the
case where all the 44 motes are sources. We study two
experiments, one called variable power where the
transmission is alternating between -6 dBm and -8dBm, and
one called fixed power where we fix the beacon transmission
power to -7 dBm which represents the average of the
variable case. The comparison of the throughput measured
on each experiment is shown in Figure 8. We run the
experiment five times for each data rate and calculate 95%
confidence interval. From the plot we can see that the
measured throughput for fixed and variable power cases are

Figure 9. Loss rate over varying
distance from the sink for B-MAC
and the funneling-MAC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Numer of hops from the sink

Lo
ss

 R
at

e

Funneling-MAC 0.2 pps
Funneling-MAC 1 pps
Funneling-MAC 4 pps
B-MAC 0.2 pps
B-MAC 1 pps
B-MAC 4 pps

Figure 7. The impact on throughput
over varying depth in terms of beacon
transmission power

0
200
400
600
800

1000
1200
1400
1600
1800
2000

-10 -8 -6 -4 0 4
Beacon Transmission Power [dBm]

Th
ro

ug
hp

ut
 [b

ps
]

0.2 pps

1 pps

2 pps

Figure 8. Throughput with
fixed/variable beacon
transmission power

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 0.2 0.4 0.6 0.8 1
Data rate [pps]

Th
ro

ug
hp

ut
 [b

ps
]

Fixed Pow er
Variable Pow er

almost the same (i.e., within the confidence interval of each
other). This result indicates that boundary variability stressed
in this test has little impact on the ability of the funneling-
MAC to operate stably. As part of this test we instrument the
motes to record if the beacon timeout occurred and the mote
had no framing information but overheard meta-schedules.
We found that 8% of the boundary motes fall into this
category; that is, motes that are consistently inside and
outside of the intensity region as the beacon transmission
power toggled between -6 dBm and -8 dBm at the beacon
interval. This indicates that these 8% of nodes would have
become interfering modes if they had not successfully
overhead embedded meta-schedule advertisements.

5.4 Loss Rate Distribution
In Section 2, we quantify the impact of the funneling

effect on the packet loss rate distribution for B-MAC. In
what follows, we now assess the impact of the funneling
effect on the funneling-MAC. We use the same setup (i.e.,
multi-hop testbed using 45 motes) and metric (i.e., loss rate)
as in Figure 3. The result is presented in Figure 9. For the
comparison, we also include the B-MAC result in the figure.
Figure 9 shows the loss rate across an increasing number of
hops from the sink. We observe that the funneling effect is
mitigated by comparing the steepness of the slopes of the
funneling-MAC and B-MAC curves, respectively. The loss
rate over the first two hops from the sink is significantly
different because the funneling effect is active, before both
curves converge on the same performance at three hops from
the sink where the funneling effect is no longer present in the
experiments. After this point both MACs offer similar
CSMA performance for 3, 4, and 5 hops from the sink.
However, the loss rate over the first two hops is considerably
smaller when using funneling-MAC over B-MAC. For
example, at the higher source rate of 4 pps B-MAC's loss rate
is 81% at one hop and 40% at two hops from the sink, while
the funneling-MAC reduces those loss rates to 48% at one
hop and 22% at two hops for the same source rate. The loss
rate for the funneling-MAC remains almost the same for
varying source traffic rates (viz. 0.2 pps, 1 pps, 4 pps) while
the loss rate for B-MAC varies considerably with source rate
and across the first two hops from the sink. In the following

section, we show how this reduction of loss rate in the first
few hops impacts the overall throughput performance of the
sensor network.

5.5 Multi-hop Throughput
Due to space considerations we do not include the one-

hop and two-hop benchmarks tests that verify the correctness
of our testbed setup by reproducing the results achieved with
B-MAC [3] and Z-MAC [10] in comparison to the
funneling-MAC performance. See [23] for the details of
these results. The benchmark results discussed in [23]
presents the same pattern reported for B-MAC [3] and Z-
MAC [10] but with minor difference in scale. In addition, the
results show that the funneling-MAC achieves almost the
same throughput as Z-MAC and outperforms B-MAC. In
what follows, we compare the throughput of B-MAC, Z-
MAC, and the funneling-MAC in our multi-hop testbed
consisted of 45 motes.

Figure 10 shows the trace of the throughput of the
funneling-MAC, Z-MAC, and B-MAC over time for the
experiment where all 44 nodes are sources generating 5 pps.
This scenario represents a heavy traffic load. We run the
experiments five times with this setup and compute the
average throughput with 95% confidence interval. At start of
the experiment, Z-MAC and the funneling-MAC perform
equally while B-MAC performs worst. It is worth noting that
the routing paths from all sources are not completely
established until approximately 20 minutes into experiment.
Protocols such as MintRoute take a significant amount of
time with the default settings to create sufficient routing state
[14] before the performance of the network stabilizes at
around 20 minutes into the experiment. When a node does
not have a route it sends the event data to the broadcast
channel, which contributes to congestion and degrades the
throughput further. As more source nodes acquire routes and
path, the funneling-MAC and B-MAC gain performance in
terms of throughput. The funneling-MAC outperforms B-
MAC consistently over time.

Schedule Drift: We can observe from Figure 10 that Z-
MAC throughput steadily degrades as time increases. In [10]
it is noted that Z-MAC runs DRAND only at the beginning
and not periodically. Hence it is possible that the reason Z-

Figure 12. Trace of throughput over
running time for Z-MAC
with/without periodic DRAND
(Dartmouth College Testbed)

Figure 10. Trace of throughput over
running time for the funneling-MAC,
B-MAC, and Z-MAC
(Dartmouth College Testbed)

Figure 11. Trace of throughput over
running time for the funneling-MAC,
B-MAC, and Z-MAC
(Columbia University Testbed)

0

400

800

1200

1600

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Running time (minutes)

Th
ro

ug
hp

ut
 [b

ps
]

Z-MAC w / periodic DRAND
Z-MAC

0

400

800

1200

1600

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Running time (minutes)

Th
ro

ug
hp

ut
 [b

ps
]

Funneling-MAC
Z-MAC
B-MAC

0

1000

2000

3000

4000

5000

6000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
Running time (minutes)

Th
ro

ug
hp

ut
 [b

ps
]

Funneling-MAC
Z-MAC
B-MAC

MAC degrades is because it is susceptible to schedule drift
where the initial schedule computed by DRAND is no longer
valid due to time-varying radio conditions and possibly route
changes, forcing Z-MAC to fall back to the performance of
CSMA, as shown in the plot. To verify that the Z-MAC
throughput degradation is not a product of our dense grid
sensor testbed setup at Dartmouth College we ran the same
experiment on a more sparse sensor testbed at Columbia
University [23]. The Columbia testbed consists of only 31
mica-2 motes. The transmission power of each mote is set to
-10dbm, and at this power, on average all nodes have at least
7 nodes from which the packet delivery ratio is at least 80%.
The result presented in Figure 11 show that the Z-MAC
throughput degradation is reproducible on the Columbia
University testbed although the scale and timing of the
degradation are different. For more details and results from
the Columbia University testbed experiments see [23].

To confirm that the throughput degradation is due to
schedule drift, we run Z-MAC with DRAND running at the
start of the experiment and then every 12 minutes. After each
DRAND run, each node reports its neighborhood table to the
sink. We analyzed these reports of neighbor table from each
node. Each node keeps a table that contains the IDs of its
neighbors in its two-hop transmission range. The schedule
(computed by DRAND) is the result of the interaction
between the nodes within the two-hop transmission range.
Hence, the neighbor table is a good indication of the validity
of the schedule. Analyzing these reports, we observe that
76.7% of the nodes experience some changes in their
neighbor table after each DRAND re-run.

In order to quantify the degree of change in
neighborhood, we define a metric for the degree of change in
the neighbor table of a node as,

ij

jiij
ij H

DD
X

+
= , (1)

where Ti is the neighbor table of a node after i-th
DRAND run, Dij is the number of nodes that are in neighbor
table Ti but not in table Tj, and Dji is the number of nodes that
are in neighbor table Tj but not in Ti, and Hij is the number of
nodes that are in neighbor table Ti OR Tj.

After calculating X12, X23, X34, and X45 of each node, we
calculated the average of X12, X23, X34, and X45 among the
nodes. From the experiment, the average of X12 (i.e., the

degree of changes between the first DRAND run at initial
time and the second DRAND) is 45.5%. The average of X23
is 25.3%, the average of X34 is 30.5%, and the average of X45
is 31.0%.

The fact that the majority (76.7%) of the nodes
experience some change in their neighbor table and the fact
that average degree of change is considerable (ranging from
25.3% to 45.5%) indicates that the schedule computed by
DRAND at the start of the experiment does not take into
account the changes in neighborhood over the time. The
neighborhood change is due to radio characteristic variability
and environmental factors.

The throughput comparison between Z-MAC without
periodic DRAND and Z-MAC with periodic DRAND is
shown in Figure 12. The solid lines in Figure 12 indicate that
Z-MAC with periodic DRAND does not suffer from the
throughput degradation except for the time DRAND is
running. During each DRAND run (at 12, 24, 36, and 48
minute in the experiment), the throughput degrades below
700 bps. At the beginning of the DRAND run, the DRAND
neighbor table is initialized (zero entry in the table), so the
network operates just like B-MAC during DRAND run. In
addition, the signaling overhead of DRAND contributes to
the degradation. It is shown in the Section 5.6 that the
signaling overhead of DRAND is large. As soon as the
DRAND run is complete, the throughput returns back to
1000 bps or greater; the value of which is the same level as
the throughput just before the DRAND run begins. This
result (that Z-MAC with periodic DRAND does not suffer
from throughput degradation) indicates that the schedule
computed by DRAND running every 12 minutes is
responsive to neighbor changes for our network
configuration and conditions. Hence, this result indicates that
the cause of throughput degradation is due to the schedule
drift where the initial schedule computed by DRAND is no
longer valid.

Varying Workload: Figure 13 compares the throughput
of the funneling-MAC, Z-MAC, and B-MAC over varying
number of sources and data rates. We varied the number of
sources each time we run an experiment. When the number
of sources is less than 44, the sources are randomly chosen
among 44 sensor nodes in the grid. We also varied the packet
generation rates of the sources each time we run a test. The

(a) Varying number of sources (b) 16 sources with varying data rate (c) 44 sources with varying data rate
Figure 13. Throughput comparison of the funneling-MAC, Z-MAC, and B-MAC

0

500

1000

1500

2000

2500

3000

16 24 32 40

Number of Sources

Th
ro

ug
hp

ut
 [b

ps
]

B-MAC 5 pps
B-MAC 0.2 pps
Z-MAC 5 pps
Z-MAC 0.2 pps
Funneling-MAC 5 pps
Funneling-MAC 0.2 pps

0

400

800

1200

1600

2000

0.2 0.5 1 2 3 4 5 6

Data rate [pps]

Th
ro

ug
hp

ut
 [b

ps
]

B-MAC
Z-MAC
Funneling-MAC

0

400

800

1200

1600

2000

0.2 0.5 1 2 3 4 5 6

Data rate [pps]

Th
ro

ug
hp

ut
 [b

ps
]

B-MAC
Z-MAC
Funneling-MAC

x-axis values represent the number of packets generated per
source node.

From Figure 13 we note that the overall throughput
results show that the funneling-MAC consistently achieves
greater throughput than B-MAC and Z-MAC under various
conditions, such as changing number of sources and
changing data rates (from very low rates to very high rates).
The throughput curves for Z-MAC and B-MAC shown in
Figure 13 follow the same general pattern in [10]. For light
traffic, Z-MAC and B-MAC perform the same, while for
high loads Z-MAC outperforms B-MAC. Note that for data
rates higher than 5 pps, MintRoute protocol cannot setup
routing paths for any node, thus, after this rate the network
goes into collapse as clearly indicated in Figure 13 (b).

There are two reasons why Z-MAC only shows marginal
improvements over B-MAC in the presence of the funneling
effect while the funneling-MAC outperforms both B-MAC
and Z-MAC by a large margin. One of the reasons is the
schedule-drift associated with Z-MAC. The other reason is
currently that DRAND cannot take into account the
funneling effect and the need to allocate more slots to nodes
in the intensity region. This is because DRAND is a pure
distributed coloring algorithm that does not take into account
the existence of the central entity (i.e., the sink) and the
funneling traffic pattern. Hence, DRAND can only allocate
the same amount of slots among its two hop neighbors. In
contrast, the funneling-MAC is capable of allocating slots
based on the funneling traffic pattern so that the funneling-
MAC allocates more slots to the nodes closer to the sink
providing a big win in performance of the measured
throughput at the sink.

We also note that the funneling-MAC performs better
than Z-MAC and B-MAC even under light traffic conditions
where the funneling effect is evident. So even under light
load B-MAC and Z-MAC are not capable of mitigating the
negative effects of funneling.

5.6 Energy Tax and Signaling Overhead Cost
In order to analyze the cost of delivering data packets to

the sink, we define the energy tax Etax as,

nD
CDE

d

tt
tax ⋅

+
= (2)

where Dt is the amount of data packets transmitted (either by
source nodes or intermediate nodes) in number of bits, Ct is

the total amount of control packets transmitted in number of
bits, Dd is the amount of packets delivered to the sink, and n
is the number of nodes in the network. We measure the
signaling overhead cost Esig as,

nD
CE
d

t
sig ⋅

= (3)

The energy tax includes the overhead of control
messages if a MAC protocol introduces some control
messages. The funneling-MAC introduces signaling for
beacon packets, schedule packets, path information field, and
meta-schedule, which we considered when computing the
energy tax. B-MAC does not introduce any control packets.
Z-MAC introduces sync packets for local synchronization. In
the Figures 14 and 15 we consider Z-MAC with and without
the DRAND overhead. If a data packet has to travel i hops to
reach the sink, the energy used in delivering this packet i
hops is included in the energy tax as well. If a data packet is
lost after traveling j hops, the energy used in delivering this
packet j hops is included in the energy tax. The signaling
overhead cost only considers the overhead of control
messages and not the cost due to packet loss. The testbed
settings are the same as the settings in Section 5.5.

The funneling-MAC introduces more signaling
overhead compared to B-MAC but the funneling-MAC
reduces the energy wasted by reducing the packet losses to
the extent that the funneling-MAC has lower or equal energy
tax compared to B-MAC despite its signaling overhead, as
we can see from Figure 14. B-MAC does not perform well
when the data rate is greater than 2 pps resulting in a high
energy tax for B-MAC. In contrast, the funneling-MAC
exhibits consistently lower energy tax. Z-MAC also reduces
the energy wasted by packet losses to the extent that Z-MAC
has a lower or equal energy tax compared to B-MAC despite
the overhead of sync packets. However, Z-MAC has a
greater energy tax than the funneling-MAC when the data
rate is greater than 2 pps. This is because the funneling effect
impacts Z-MAC’s overall energy tax as packet loss increases.
In summary, our results indicate that even though the
funneling-MAC has more signaling in its basic protocol than
the other protocols, it is a more energy efficient than Z-MAC
and B-MAC. The signaling overhead cost of the funneling-
MAC and Z-MAC are similar if we do not consider the
overhead of running DRAND. Also from the schedule drift
exhibited in Figures 10, 11 and 12 for Z-MAC it would be

Figure 15. Signaling overhead cost
of the funneling-MAC and Z-MAC

(a) Varying number of sources with 5 pps (b) 44 sources with varying data rate

Figure 14. Energy tax comparison of the funneling-MAC, Z-MAC, and B-MAC

0

1

2

3

4

5

6

7

8

9

16 24 32 40
number of sources

En
er

gy
 T

ax

Funneling-MAC
Z-MAC
B-MAC

0

2

4

6

8

10

0.2 0.5 1 2 4 5

Data rate [pps]

En
er

gy
 T

ax

Funneling-MAC
Z-MAC
B-MAC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2 0.5 1 2 4 5

Data Rate [pps]

Si
gn

al
in

g
O

ve
rh

ea
d

C
os

t

Funneling-MAC
Z-MAC
Z-MAC w / periodic DRAND

necessary to re-run DRAND to boost its performance and
resolve the schedule drift. Based on the observations from
Figure 12, it would be costly to re-run DRAND every 12
minutes to maintain performance. If we do this then the cost
of operating Z-MAC and its DRAND mechanism increases
significantly, as indicated in Figure 15. Clearly, it is not
tenable to re-run DRAND periodically because of the
significant overhead incurred; this is clearly shown in Figure
15.

6. Conclusions
The main contributions of this paper are as follows. We

show that by implementing a simple hybrid TDMA/CSMA
scheme in the intensity region, under the control of the sink,
can significantly improve the throughput and loss
performance of sensor networks, even under lightly loaded
traffic conditions, and for small intensity region depths of
one or two hops. We also show experimentally that multiple
MACs can coexist in the sensor network, specifically, we can
run a hybrid TDMA/CSMA in the intensity region which
seamlessly coexists with pure CSMA outside of that region,
in addition, any potential interference caused by dynamically
increasing or decreasing the intensity region (i.e., the
TDMA/CSMA region) is effectively managed by the
funneling-MAC. We show that the funneling-MAC out-
performs B-MAC and Z-MAC under a wide variety of
network and traffic conditions. The TinyOS source code for
the funneling-MAC is available from the web [22].

7. Acknowledgements
This work is supported by the Army Research Office

(ARO) under Award W911NF-04-1-0311 on resilient sensor
networks. We would like to thank Injong Rhee and Ajit
Warrier for providing us with TinyOS code of Z-MAC. We
would also like to thank Nirupama Bulusu for shepherding
our paper and the anonymous reviewers for their excellent
comments and suggestions.

8. References
[1] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient MAC

Protocol for Wireless Sensor Networks”, In Proc. of IEEE
INFOCOM 2002, June 2002.

[2] Tijs van Dam, and Koen Langendoen, “An Adaptive Energy-
Efficient MAC Protocol for Wireless Sensor Networks”, In Proc.
of 1st ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), November 2003.

[3] J. Polastre, J. Hill, D. Culler, “Versatile Low Power Media
Access for Wireless Sensor Networks”, In Proc. of 2nd ACM
Conference on Embedded Networked Sensor Systems (SenSys
2004), November 2004.

[4] K. A. Arisha, M. A. Youssef, and M. F. Younis, “Energy-Aware
TDMA-Based MAC for Sensor Networks”, In Proc. of IEEE
Workshop on Integrated Management of Power Aware
Communications, Computing and NeTworking, IMPACCT 2002,
New York, May 2002.

[5] Venkatesh Rajendran, Katia Obraczka, and J.J. Garcia-Luna-
Aceves, “Energy-Efficient, Collision-Free Medium Access
Control for Wireless Sensor Networks”, In Proc. of 1st ACM

Conference on Embedded Networked Sensor Systems (SenSys
2003), November 2003.

[6] G. Pei and C. Chien, “Low Power TDMA in large wireless
sensor networks”, In Proc. of IEEE Communications for
Network Centric Operation MILCOM 2001, October 2001.

[7] Chieh-Yih Wan, Shane E. Eisenman, Andrew T. Campbell, and
John Crowcroft, “Siphon: Overload Traffic Management using
Multi-Radio Virtual Sinks”, In Proc. of 3rd ACM Conference on
Embedded Networked Sensor Systems (SenSys 2005),
November 2005.

[8] Shashidhar Gandham, Milind Dawande, and Ravi Prakash, “Link
Scheduling in Sensor Networks: Distributed Edge Coloring
Revisited”, In Proc. of IEEE INFOCOM 2005, Miami, USA,
March 2005.

[9] J. Li and G. Lazarou, “A bit-map-assisted energy-efficient MAC
scheme for wireless sensor networks”, In Proc. of IEEE
Information Processing in Sensor Networks (IPSN '04), Berkeley,
USA, April 2004.

[10] Injong Rhee, Ajit Warrier, Mahesh Aia and Jeongki Min, “Z-
MAC: a Hybrid MAC for Wireless Sensor Networks”, In Proc.
of 3rd ACM Conference on Embedded Networked Sensor
Systems (SenSys 2005), November 2005.

[11] TinyOS web site: http://www.tinyos.net.
[12] X. Chen, “Dual near field effect in radio frequency simulations”,

2002 Summer Computer Simulation Conference, San Diego,
USA, July 2002.

[13] Chipcon Corporation, “CC1000 low power FSK transceiver”,
http://www.chipcon.com/files/CC1000DataSheet.pdf.

[14] A. Woo and D. Culler, “Taming the Underlying Challenges of
Reliable Multihop Routing in Sensor Networks”, In Proc. of 1st
ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003), November 2003.

[15] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating
Congestion in Wireless Sensor Networks”, In Proc. of 2nd ACM
Conference on Embedded Networked Sensor Systems (SenSys
2004), November 2004.

[16] D. Petrovic, R. C. Shah, K. Ramchandran, J. Rabaey, “Data
funnelling: routing with aggregation and compression for
wireless sensor networks”, In Proc. of IEEE Sensor Network
Protocols and Applications (SNPA 2003), May 2003.

[17] N. Shrivastava, C. Buragohain, D. Agrawat, S. Suri, “Medians
and Beyond: new aggregation techniques for sensor networks”,
In Proc. of 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys 2004), Baltimore, November, 2004.

[18] Z-MAC TinyOS Source Code: http://www.csc.ncsu.
edu/faculty/rhee/export/zmac/software/zmac/zmac.htm

[19] A. Woo and D. Culler, “A Transmission Control Scheme for
Media Access in Sensor Networks”, In Proc. of ACM/IEEE
International Conference on Mobile Computing and Networking
(MOBICOM 2001), Rome, Italy, July 2001.

[20] B. Hohlt, L. Doherty, and E. Brewer, “Flexible Power
Scheduling for Sensor Networks”, In Proc. of IEEE Information
Processing in Sensor Networks (IPSN '04), Berkeley, April 2004.

[21] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time
Synchronization using Reference Broadcasts”, In Proc. of 5th
Symposiumon Operating Systems Design and Implementation
(OSDI 2002), December 2002.

[22] Funneling-MAC project webpage: http://www.cs.dartmouth.edu/
~sensorlab/funneling-mac/

[23] Funneling-MAC Technical Report:
http://www.cs.dartmouth.edu/~sensorlab/funneling-mac/TAP-
TR-2006-08-003.pdf.

