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Abstract 
Sensor networks exhibit a unique funneling effect which is a 
product of the distinctive many-to-one, hop-by-hop traffic 
pattern found in sensor networks, and results in a significant 
increase in transit traffic intensity, collision, congestion, 
packet loss, and energy drain as events move closer toward 
the sink. While network (e.g., congestion control) and 
application techniques (e.g., aggregation) can help counter 
this problem they cannot fully alleviate it. We take a different 
but complementary approach to solving this problem than 
found in the literature and present the design, implementation, 
and evaluation of a localized, sink-oriented, funneling-MAC 
capable of mitigating the funneling effect and boosting 
application fidelity in sensor networks. The funneling-MAC 
is based on a CSMA/CA being implemented network-wide, 
with a localized TDMA algorithm overlaid in the funneling 
region (i.e., within a small number of hops from the sink). In 
this sense, the funneling-MAC represents a hybrid MAC 
approach but does not have the scalability problems 
associated with the network-wide deployment of TDMA. 
The funneling-MAC is 'sink-oriented' because the burden of 
managing the TDMA scheduling of sensor events in the 
funneling region falls on the sink node, and not on resource 
limited sensor nodes; and it is 'localized' because TDMA 
only operates locally in the funneling region close to the sink 
and not across the complete sensor field. We show through 
experimental results from a 45 mica-2 testbed that the 
funneling-MAC mitigates the funneling effect, improves 
throughput, loss, and energy efficiency, and importantly, 
significantly outperforms other representative protocols such 
as B-MAC, and more recent hybrid TDMA/CSMA MAC 
protocols such as Z-MAC. 
Categories and Subject Descriptors: C.2.2 [Computer 
Communication Networks]: Network Protocols, Wireless 
Communications 
General Terms: Algorithms, Design, Experimentation. 
Keywords: MAC, Wireless Sensor Networks, Funneling 
Effect. 

1. Introduction 
Wireless sensor networks exhibit a unique funneling 

effect [7] where events generated in the sensor field travel 
hop-by-hop in a many-to-one traffic pattern toward one or 
more sink points, as illustrated in Figure 1. This combination 
of hop-by-hop communications and centralized data 
collection at a sink creates a choke point on the free flow of 
events out of the sensor network. For example, the funneling 
of events leads to increased transit traffic intensity and delay 
as events move closer toward the sink, resulting in significant 
packet collision, congestion, and loss; at best this leads to 
limited application fidelity measured at the sink, and at worst 
the congestion collapse [15] of the sensor network. Other 
drawbacks exist. The sensors nearest to the sink, typically 
within a small number of hops loose a disproportionate larger 
number of packets (we call this region of the funnel the 
intensity region, as illustrated in Figure 1) and consume 
significantly more energy than sensors further away from the 
sink, hence, shortening the operational lifetime of the overall 
network. Mitigating the funneling effect represents an 
important challenge to the sensor network community and is 
the subject of this paper. 

Researchers have proposed distributed congestion 
control algorithms [15], tiered network design [7], and data 
aggregation techniques [16] [17] to respond to increased load 
and congestion in sensor networks. But as the literature [15] 
[7] indicates these techniques alone cannot fully alleviate the 
problem because it is very difficult to effectively rate control 
traffic at aggregation points or sources to match the 
bottleneck conditions observed at the sink nodes. In this 
paper, we show that the majority of packet loss in a sensor 
network occurs within the first few or more hops from the 
sink, even under light traffic conditions. We conjecture that 
by putting additional control within the first few or more 
hops from the sink we can significantly improve 
communication performance and eradicate the funneling 
effect. 

We propose a localized, sink-oriented funneling-MAC 
that explicitly recognizes the existence of funneling effect in 
its design. While there have been a number of important new 
MAC protocols proposed for sensor networks, to the best of 
our knowledge none have addressed the funneling effect. 
The funneling-MAC represents a hybrid (schedule-based) 
TDMA and (contention-based) CSMA/CA MAC scheme 
that operates in the intensity region of the event funnel, as 
illustrated in Figure 1. Pure CSMA/CA operates network-
wide in addition to acting as a component of the funneling-
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MAC that operates in the intensity region. The funneling-
MAC mitigates the funneling effect by using local TDMA 
scheduling in the intensity region only, providing additional 
scheduling opportunities to nodes closer to the sink, which 
typically carry considerably more traffic than nodes further 
away from the sink. The funneling-MAC is sink-oriented 
because the burden of managing TDMA scheduling of 
sensor events in the intensity region falls on the sink node, 
and not on resource limited sensor nodes. The funneling-
MAC is localized in operation because TDMA only operates 
in the intensity region close to the sink and not across the 
complete sensor field. The burden of computing and 
maintaining the depth of the intensity region also falls on the 
sink. We assume that the sink is likely to have more 
computational capability and energy reserves than simple 
sensors; however, the funneling-MAC does not rely on this 
to operate efficiently. By using TDMA in this localized 
manner, and putting more management onus on the sink not 
the sensors, we offer a scalable solution for the deployment 
of TDMA scheduling in sensor networks, one that is capable 
of boosting application fidelity as measured at the sink, but 
does not have the scalability problems associated with the 
network-wide deployment of TDMA, which, we believe, is 
untenable today as a network-wide deployment strategy for 
large-scale sensor networks. 

The structure of the paper is as follows. In Section 2 we 
show the impact of the funneling effect using results from an 
experimental sensor network. The effectiveness of existing 
MACs to counter the funneling effect is discussed in Section 
3. Following this, we present the detailed design of the 
funneling-MAC algorithms in Section 4 that include: on-
demand beaconing, which both provides light-weight clock 
synchronization for TDMA scheduling in the intensity region, 
and regulates effectively boundary of that region; sink-
oriented scheduling, which computes and distributes new 
schedules when needed in an efficient low cost manner; and 
dynamic depth-tuning, which dynamically adjusts the depth 
of TDMA operating in the intensity region with the goal of 
maximizing the throughput of the sink choke point while 
minimizing the packet loss in the funnel. The Appendix in 
our technical report [23] provides important analytical 
foundations that justify the choice of dynamically controlling 

the depth of the intensity region in response to measured 
traffic conditions at the sink node. We take an experimental 
systems approach to the validation of the funneling-MAC’s 
performance. Section 5 presents results from a number of 
experiments using a 45 mica-2 mote network. We consider a 
number of different node densities, and traffic characteristics 
to study the performance of the funneling-MAC in 
comparison to other representative protocols such as the 
TinyOS [11] default protocol B-MAC [3], and more recently 
proposed, and comparative protocol Z-MAC [10], which is 
also based on a hybrid TDMA/CSMA approach. We show 
by simply exerting control over the first few or more hops 
from the sink that the funneling-MAC significantly 
outperforms B-MAC and Z-MAC, which we show are not 
capable of dealing with the funneling effect. 

2. Funneling Problem 
We begin by first quantifying the impact of the funneling 

effect in a sensor network using the TinyOS CSMA-based B-
MAC protocol, the MintRoute routing protocol, and the 
Surge application in a 45 mica-2 testbed. The network is 
deployed as a 5x9 rectangular grid of equally spaced motes 
in a large open room, making sure there are no interference 
and near-field issues [12] during the experiments. The mote 
at the bottom left corner operates as the sink in the grid, as 
illustrated in Figure 4. Node spacing and transmission power 
are set such that one-hop neighbors achieve > 80% delivery, 
while two-hop neighbors achieve < 20% delivery. In this 
way, a fairly strict and dense multi-hop radio environment is 
constructed for experimentation.  

We randomly select 16 of the 44 sensing nodes to 
generate event rates ranging from 0.2-5 packets/sec (pps) 
where the packet size is 36 bytes. The goal is to gradually 
drive the sensor network from low to moderate load and then 
into a congested and saturated state, while studying the choke 
point throughput measured at the sink and the loss in the 
network. Typically, events travel over multiple hops, 2-5 
hops in the case of the experiment. Figure 2 shows the 
resulting fidelity (i.e., throughput curve), as measured at the 
sink as we increase the event rate of all 16 sources. Note that 
we exclude the preamble and CRC sizes, and count the 
packet size as 36 bytes when calculating the throughput 
fidelity. We can clearly see that the throughput measured at 
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the sink rises to a peak of approximately 1100 bps before the 
network falls into a congested and saturated state. Further 
increase in source rate only drives the network into further 
overload and eventual collapse with increasing load. We 
observe from Figure 2 that source rates of 0.2 pps, 1 pps, and 
4 pps can be considered to be light, medium (near optimal 
load), and overload traffic scenarios, respectively. We use 
these rates to further study the impact of the funneling effect 
on loss distributions across the network. We consider the 
overall loss rate in the network to be the number of packets 
lost in the network divided by the number of packets 
transmitted in the network. The overall loss rates measured 
for increasing load are approximately 67%, 72%, and 95% 
loss rate for 0.2 pps, 1 pps, and 4 pps, respectively. What is 
surprising about these results in that at low load there is still 
significant loss (67%), which rises to the point where 95% of 
events transmitted in the network are lost at high load. This 
also translates to significant energy waste. Such loss is 
unacceptable for many applications and would quickly 
deplete the sensors energy reserves. Note that in the case of 
light and medium traffic scenarios, packet loss is mainly due 
to collision and hidden terminal problem, whereas in the high 
and overloaded traffic scenarios loss is due to buffer 
overflow in addition to collision and hidden terminal 
problem. 

Next, we consider the distribution of the loss across the 
hops in the network. The solid lines in Figure 3 show the loss 
rate at the i-th hop (i.e., the number of packets transmitted 
and lost by i-th hop divided by the number of packets 
transmitted by i-th hop). The result clearly quantifies the 
funneling effect for this experiment and shows its debilitating 
impact on network performance. These results represent the 
average of five runs of the same experiment and the 95% 
confidence intervals. What is interesting about these results is 
that Figure 3 clearly shows that there is increasing loss at 
nodes closer to the sink, which is a product of the many-to-
one, hop-by-hop traffic pattern of the funneling effect. For 
example, for all traffic rates the vast majority of packet loss 
occurs in the first two hops from the sink and drops of 
quickly for hops further away from the sink. These are 
fingerprints of the funneling effect. Note, that even for a light 
traffic load of 0.2 pps this trend is still dominant with 
significant loss registered in the first few hops. These per-

hop loss rates for the low rate traffic explain why at such a 
low rate we still can record an overall loss rate for the 
network of 67%, as discussed above. The dotted lines in 
Figure 3 show a cumulative distribution function (CDF) of 
the per-hop losses. We can observe from the plot that 
between approximately 80-90% of the losses across the three 
low, medium, high rates happened within the first two hops 
from the sink. We can conclude that funneling effect is 
mostly invariant to source rate. 

These results indicate that by adding addition controls 
(e.g., scheduling) in the network over the first few hops 
could offer significant gains across all traffic rates considered 
in the experiment (viz. light, medium, heavy). We can also 
conclude that even at low rates the CSMA-based B-MAC 
cannot mitigate the funneling effect. These are important 
insights. Therefore, we conjecture that new MAC approaches 
other than B-MAC are needed to fully address the funneling 
problem. 

3. Related Work 
In what follows, we discuss a number of sensor network 

MAC protocols and traffic control mechanisms found in the 
literature and comment on how they would fair in mitigating 
the funneling effect discussed in the previous section. 

S-MAC [1], T-MAC [2], B-MAC [3] and the MAC 
discussed by Woo and Culler in [19] represent well-known 
contention-based (CSMA) MAC protocols for sensor 
networks. In [19] the authors discuss an early contribution to 
sensor network MACs that uses adaptive rate control 
mechanisms on top of CSMA to achieve energy efficiency 
and fairness. This MAC [19] represents a network-aware 
scheme like the funneling-MAC in the sense that it considers 
route-through traffic when using rate control. S-MAC avoids 
idle listening by putting sensor nodes to sleep periodically. S-
MAC requires time synchronization but the time-scale is 
much larger than TDMA. T-MAC provides almost the same 
functionality as S-MAC except that it is capable of further 
reducing the idle listening by transmitting all messages in the 
buffer of each node at the beginning of the active period, 
allowing it to sleep instantly once the buffer is flushed. B-
MAC provides well-defined interfaces to low power listening 
(LPL), clear channel assessment (CCA) and 
acknowledgements. LPL improves the energy efficiency and 
throughput with the cost of transmitting a long preamble by 
sources. We show that B-MAC is not capable of mitigating 
the funneling effect because of the large build up of losses in 
nodes closer to the sink, as discussed in the previous section. 
We conjecture that Woo’s MAC [19], S-MAC and T-MAC 
based on similar contention-based approaches as B-MAC 
would likely be as non-responsive and show the same poor 
trends as B-MAC in dealing with the funneling effect. 

There are several schedule-based (TDMA) MAC 
algorithms proposed in the sensor network literature that do 
better at mitigating the funneling effect. The energy-aware 
TDMA-based MAC [4] achieves collision free access and 
energy efficiency by assigning each node their own time 
slots (listening slot and transmitting slot), allowing nodes to 

beacon 

62 ft 

5f
t 

Figure 4. Dartmouth College sensor testbed 

sink 

25
 ft

 

7 ft 

D E A F 

C G 

B H 

f-nodes 

boundary of the intensity region 

sensors 



 

sleep when it is not their slot time. This approach [4] may be 
impractical because the sink requires complete topology 
information to compute the TDMA schedule and every node 
requires precise time synchronization. Furthermore, from [4] 
every node would need to communicate directly with the 
sink (using high power). These issues indicate that the actual 
implementation of such a scheme in a large sensor network 
would have scalability problems.  

Another TDMA protocol called TRAMA [5] performs 
an adaptive election algorithm to overcome this drawback of 
wasting time slots. TRAMA is a scalable distributed 
algorithm where each node schedules time slots among its 
two hop neighbors using a neighbor protocol and schedule 
exchange protocol as discussed in [5]. One drawback of 
implementing TRAMA in a mote network (no current 
implementation exists for TinyOS, as far as we are aware) is 
that the overall signaling overhead of these fairly 
complicated protocols may present scalability problems, 
particularly if implemented in a large-scale testbed. There are 
a number of other TDMA-based algorithms found in the 
literature [6] [8] [9] (but not implemented in mote networks) 
that suffer from similar problems when targeted toward 
large-scale sensor deployment because of the need for global 
network-wide schedule computation and distribution, and 
time synchronization. 

The most suitable protocol for potentially mitigating the 
funneling effect that is available in source code for mica-2 
motes is the Z-MAC protocol. Z-MAC [10] is a hybrid 
protocol that acts like a contention-based protocol under low 
traffic conditions and a schedule-based protocol under high 
traffic conditions by using the schedule computed by 
DRAND (Distributed RAND) as a hint. DRAND is a fairly 
complex coloring algorithm to explain here in detail, 
sufficient too say that it allocates time slots to every node 
ensuring that no two nodes among a two-hop neighborhood 
are assigned to the same time slot by broadcasting the 
TDMA schedule of each node to its two hop neighbors. Z-
MAC reduces the hidden terminal problem by not allowing 
two nodes in two-hop distance to transmit at the same time. 
In order to improve utilization, Z-MAC allows ‘non-owners’ 
of a slot to contend for the slot if it is not being used by its 
‘owner’. Z-MAC requires global time-synchronization in the 
initial phase, and then it performs local synchronization by 
sending periodic sync packets between nodes. Z-MAC 
requires that DRAND is run at startup to set up the TDMA 
schedule, which may be a heavy burden for light-weight 
sensor devices. The message complexity of DRAND is O(δ), 
where δ  is the local neighborhood size of each node while 
the message complexity of the funneling-MAC (detailed in 
the next section) is O(1). Because of the overhead of running 
DRAND, the Z-MAC authors do not recommend that it be 
run periodically. We choose to compare the funneling-MAC 
to Z-MAC in the experimental evaluation section (Section 5). 
We note in those experiments that Z-MAC is susceptible to 
“schedule drift” (i.e., when the schedule allocated by 
DRAND to nodes drifts out of sync because of various time 

varying radio impairments). We discuss these issues and 
show that, while Z-MAC offers scheduling support, it is not 
designed to schedule more traffic at nodes closer to the sink 
in its current form, and therefore, cannot mitigate the effects 
of funneling events to a sink choke point. Because of the 
potential for schedule drift, Z-MAC’s performance ends up 
degrading to being only marginal better than B-MAC under a 
number of experimental scenarios, as we discuss in Section 5. 

Flexible Power Scheduling (FPS) [20] also represents a 
hybrid approach that provides coarse grain scheduling that 
computes radio on/off times, and fine grain MAC control for 
channel access. The coarse grain scheduling of FPS 
represents a distributed approach where each node schedules 
its own children. The funneling-MAC and Z-MAC have 
some similarities to FPS. However, FPS is limited when 
dealing with the funneling effect because it does not prevent 
nodes with different parents from using the same slot. FPS 
simply relies on CSMA to provide collision avoidance in this 
case. 

In [7] the authors propose to add multi-radio virtual 
sinks to sensor networks as a means of dealing with loss at 
the physical sink. Virtual sinks address the funneling effect 
by adding more ‘capacity’ in an on-demand manner to the 
network using network layer routing to redirect traffic off the 
primary mote radio network (reducing the funneling effect 
on the physical sink) and onto an overlay network. While 
virtual sinks are effective they require specialized multi-radio 
nodes and an overlay network to siphon packets off the 
primary network. In addition, virtual sinks themselves can 
experience a mini-funneling effect [7]. 

4. Funneling-MAC Design 
We now discuss the detail design of the funneling-MAC 

algorithms, and issues related to timing and framing. 

4.1 On-Demand Beaconing 
The funneling-MAC localized TDMA is triggered by a 

beacon broadcast by the sink. All sensor nodes perform 
CSMA by default unless they receive a beacon and are then 
deemed f-nodes. The sink regulates the boundary of the 
intensity area (see Figure 4) by controlling the transmission 
power of the beacon. The dynamic depth-tuning algorithm 
discussed in Section 4.5 determines this transmission power. 
The sink then transmits the beacon message at the computed 
transmission power. The nodes that received the beacon 
consider themselves to be in the intensity region and f-nodes. 
These nodes can perform TDMA while the nodes that do not 
receive the beacon (e.g., those nodes outside the intensity 
region) perform CSMA. 

F-nodes need to synchronize their clock to perform 
TDMA but the funneling-MAC does not rely on any 
synchronization protocol. If a network synchronization 
protocol is present then the funneling-MAC can use that and 
further minimize its active beacon signaling. However, in our 
implementation of the funneling-MAC we do not assume this 
and integrate a light-weight clock synchronization scheme 
embedded in the beacon messaging. Therefore, f-nodes rely 



 

on the beacon sent to activate TDMA and regulate the 
boundary of the intensity region for clock synchronization. 
As soon as a node receives a beacon, it becomes an f-node 
and synchronizes with other f-nodes by initializing its clock. 
The propagation delay of a beacon is on the scale of 
microseconds in wireless sensor networks while the accuracy 
of synchronization required for the funneling-MAC is on the 
scale of milliseconds, so beacon-based synchronization can 
keep the synchronization tight enough to perform TDMA 
scheduling. Because the beacon is broadcast across the 
complete intensity region then all f-nodes receive the beacon 
at the same time and are tightly synchronized. This is a 
similar approach to reference-broadcast synchronization [21] 
but much simpler.  

The beacon packet contains a small number of control 
fields including the beacon interval, superframe duration, 
and the TDMA duration. The superframe duration and 
TDMA duration are explained in Section 4.3 on framing. 
The beacon is sent periodically every beacon interval 
specified in the beacon packet. Experimentally we set the 
beacon interval so it is responsive to possible changes in 
routing, traffic rates, and clock drift of f-nodes. The beacon 
interval is determined by taking into account the accuracy of 
the local clock of the motes and required accuracy of the 
synchronization, as discussed in Section 5.1. 

The beacon is sent only when it is necessary and in an 
on-demand basis. The beacon is not sent when the network is 
idle or receiving very low traffic. Note that every f-node 
keeps a timer that expires if the f-node does not receive a 
beacon for a period longer than the beacon interval. When 
the timer expires, the node performs pure CSMA. As soon as 
the sink receives a sufficient amount of data packets as 
determined by a change in the weighted moving average of 
the traffic (measured at the sink) from all paths then it begins 
to transmit a beacon periodically, based on the computed 
beacon interval. Conversely, if the sink does not receive 
sufficient traffic to allocate slots in the network in one or 
more beacon interval times, then it stops sending beacons 
until the sink registers such a positive change. F-nodes use 
the beacon interval to synchronize with future beacon 
transmissions from the sink. A mote based beacon interval 
timer allows motes to defer from transmitting when a beacon 
is due which could potentially interfere with the beacon if 
left unregulated.  

When the sink starts beaconing at start-up or just after an 
idle period, it starts with the minimum transmission power 
(i.e., the same transmission power as ordinary sensor nodes). 
This is because the depth-tuning algorithm (as described in 
Section 4.5) uses an incremental increase/decrease rule when 
calculating the beacon/schedule transmission power. 
Gradually the sink will increase the transmission power as 
the measured traffic increases and the throughput/loss 
objectives are met (as addressed in Section 4.5) using the 
dynamic depth-tuning algorithm. Conversely, if the sink was 
to send the beacon not at the minimum power as discussed 
but rather high transmission power from start-up or after an 

idle period, then the beacon would likely interfere with 
contention based incoming CSMA data packets. This is 
because motes in a start-up state or just after an idle period 
are not aware when a beacon will be transmitted. This 
problem is resolved by the funneling-MAC because the 
starting point for the dynamic depth-tuning algorithm is 
always the same as the common default power used by motes 
(which is considered to be the power floor for the depth-
tuning algorithm). Hence, the impact of interference is 
minimized. Since the objective of the tuning algorithm is to 
increase the depth of the intensity region and therefore the 
transmission power there is a case that nodes not reachable 
by the existing power level will be interfered with when the 
tuning algorithm increments the beacon transmission power. 
The funneling-MAC resolves this potential interference issue 
by introducing a ‘meta-schedule advertisement’, which is 
discussed in Section 4.4.  

Our design goal is to limit the cost of supporting 
periodic beacons by making them on-demand.  One other 
parameter we consider is to extend the beacon interval to 
trade off signaling overhead, the reception power used by 
motes in the existing intensity region, and reduce the energy 
demands on the sink. We introduce the notion of ‘lazy 
beaconing’, which pushes out the optimal beacon interval 
that is used to maintain tightness of clock synchronization 
and slot scheduling at f-nodes.  By pushing out the beacon 
interval in this manner there can be some performance 
penalties if left unbounded. In Section 5.1, we discuss the 
optimal beacon interval used to maintain tight 
synchronization and slot scheduling, and optimal throughput, 
and contrast this to lazy beaconing which allows us to triple 
the optimal beacon interval for only a small reduction in the 
performance of the network, as measured by sink fidelity. 

4.2 Sink-Oriented Scheduling 
The sink monitors the traffic that arrives at the sink on a 

per-aggregated-path basis, calculates the TDMA schedule 
based on the monitored traffic (initially based on only new 
CSMA events and thereafter including existing TDMA 
traffic) for all paths, and distributes the schedule by 
broadcasting a schedule packet at the same transmission 
power used by beaconing. We define an aggregated path as 
a path which results from the merge of two or more paths at 
or before entering the intensity region. The funneling-MAC 
treats an aggregated path as a single path entry. For example 
in Figure 4, the funneling-MAC keeps information 
associated with paths G-B-F-E-D and H-B-F-E-D as a single 
aggregated path entry B-F-E-D. The funneling-MAC scales 
well because the number of aggregated paths entering the 
intensity region is bounded by the number of nodes in the 
intensity region.  We use the term path to indicate aggregated 
path in the remainder of the paper for convenience. In what 
follows, we provide a detailed discussion of sink-oriented 
scheduling. See [23] for the pseudo code of the algorithm 
that is not presented in this paper because of space limitations. 

In order to compute the schedule the sink needs to 
determine the identity of the path-head f-nodes and the 



 

weighted average of the traffic on the path in order to 
correctly schedule the path. The concept of a path represents 
the direction taken by a train of events from a path-head (e.g., 
mote A in Figure 4) on a hop-by-hop basis along a route (e.g., 
determined by the TinyOS MintRoute routing protocol in our 
experiments) to the sink (e.g., path A-F-E-D-Sink). The sink 
measures the weighted moving average of each path and 
allocates slots according to an allocation rule, which we 
discuss below. In order to enable the sink to acquire this 
information the funneling-MAC reserves 3 bytes in the 
packet header called the path information field. The path 
information field is only updated by the f-nodes along a 
certain path in the intensity region. The sink gathers this 
information from incoming packets on a per-path basis for all 
paths in the intensity region. The path information field 
contains the path head id (2 bytes) and the number of hops (1 
byte). The path-head lies near the intensity region boundary 
where the path head id equals the node id of the path-head, 
and the number of hops field reflects the number of hops the 
packet traverses on the path between the path-head and the 
sink. For example in Figure 4 if a packet generated from 
outside of the intensity region is received by node A, node A 
forwards the event packet toward the sink following the path 
A-F-E-D-Sink. In this simple example, the path head id is A, 
and the value of number of hops is 4. Importantly, node A 
identifies itself as the path-head when it receives a data event 
packet with a value of the path information field set to zero. 
In addition, source nodes inside the intensity region identify 
themselves as a path-head when they generate a new packet. 
A path-head puts its id in the path head id field and a value 1 
in the number of hops field. All f-nodes along the path 
increment the value of the number of hops field by 1 when 
they forward the event data packet. Consequently, each 
packet that arrives at the sink carries the path head id of the 
path it traversed as well as the number of hops. 

The sink monitors incoming data packet and keeps track 
of incoming traffic rate for each path along with the path 
head id and number of hops. The sink keeps the traffic rate 
on a per path basis in the path table. The sample period is one 
superframe (as defined in Section 4.3) and the sink measures 
the number of incoming packets in one superframe per path. 
Then, the sink calculates the weighted moving average of the 
measured traffic rate per path. 

The sink computes the schedule by allocating time slots 
per-path rather than on per-node basis. This is because the 
sink only has the information about the paths and not about 
the nodes in the paths. This makes the scheme scalable and 
not coupled to any tree generated by a particular routing 
scheme; that is, the schedule computation operates on a 
simple path abstraction of path-end and hop count and not 
topological routing information. Therefore, the funneling-
MAC is agnostic to the routing scheme or routing tree 
formations. The sink stores per-path state information in a 
path-table, which is indexed using the path-head id, per-path 
measurement statistics are also maintained in this table. Each 
entry contains a path head id, number of hops, and incoming 

rate. The incoming rate represents the number of packets 
each path should carry during one superframe. Note that the 
sink ages each entry every beacon interval and if the table 
overflows the sink replaces the oldest entry with a new entry. 

Slot Allocation Rule: The sink allocates slots to each 
path using the information in the path table. For example, 
assume that the traffic rate of a path is k and the number of 
hops of the path is h. The sink should allocate every node in 
the path with  k  slots so the sink allocates   hk ×  slots to 
the path. If the traffic rate of a path is less than 1, the sink 
does not follow the above rule, instead, the sink allocates 1 х 
h slots to the path. The traffic rate can be less than 1 in the 
case where periodic traffic with data generation rates of less 
than 1 packet in one superframe or in the case where event-
driven traffic happens. As shown in Section 2, the funneling 
effect is active under light traffic load conditions as well at 
increased loads so there is a need to schedule paths that have 
a traffic rate less than 1. If the traffic rate of a path is low, the 
sink should allocate the minimum number of slots to such a 
path. The minimum number of slots that the sink can allocate 
to a node is 1 slot. Therefore, the sink should allocate every 
node in the path 1 slot so the sink allocates 1 х h slots to the 
path. This rule turns out to be good because the testbed 
evaluation result in Section 5.5 show that the funneling-
MAC improves the throughput in light traffic scenario 
compared to pure CSMA.  

Simple Spatial Reuse: To enhance the throughput 
inside the funnel area, the sink considers spatial reuse. It is 
very difficult to design an optimal spatial reuse scheme 
without having the complete physical topology information 
of the network. However, the sink can compute sub-optimal 
spatial reuse using only the per-path number of hops state 
information. The funneling-MAC takes this simple sub-
optimal approach and reuses the same slot if two nodes are 
more than 2 hops away from each other. In this case, f-nodes 
are unlikely to interfere because one of the nodes may back 
off due to the fact that in the funneling-MAC carrier sensing 
is used even for the scheduled access. For example in Figure 
4, the f-nodes A or B can share the same slot with f-node D 
because they are 3 hops away. In this case, sink based 
schedule computation allows f-node B to start transmission 
three slots after f-node A’s slot (i.e., at the slot which belongs 
to f-node D). As a result, the computed schedule is as 
follows: 3 slots are allocated to the path A-F-E-D, and 4 slots 
to path B-F-E-D. 

 
Once the sink computes the schedule, it broadcasts a 

schedule packet for all paths in its path-table immediately 
after the next beacon. The sink transmits the schedule packet 
using the same power level that the sink uses for the beacon 
so all f-nodes in the intensity region are likely to hear the 
schedule. Because new schedules are not typically sent each 
beacon interval the sink sets a schedule expected bit in the 
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Figure 5. Schedule packet structure



 

beacon header. The payload of the schedule packet contains 
the path head ids of the scheduled paths and the number of 
slots allocated to each path, respectively. This resulting per-
path schedule is stored in a tuple [path head id (2 bytes), 
number of slot (1 byte)] in the packet payload. For example 
in the simple schedule packet shown in Figure 5 all f-nodes 
are informed that there are 3 active paths scheduled in the 
intensity region and that the 3 paths are allocated, 3, 4, and 3 
slots, respectively. F-nodes receive the schedule packet and 
figure out which slots are assigned to them. Each f-node 
keeps a table where it stores the path head node ID of each 
path going through it and the number of hops to the path 
head when they forward data packets. Using this table, the f-
node can compute which slots are allocated to itself. For 
example, the entries of {path-head id, number of hops} 
maintained by the node E are {A, 2} and {B, 2} so the node 
E understands that it can transmit two slots after A’s slot and 
two slots after B’s slots. 

4.3 Timing and Framing Issues 
Once f-nodes receive a schedule packet, they 

synchronize their communication to the funneling-MAC 
framing structure, as illustrated in Figure 6. F-nodes transmit 
their scheduled packets at their allocated slots times in the 
TDMA frame. To enhance the robustness and flexibility of 
the funneling-MAC, a CSMA frame (random access period) 
is reserved between two consecutive TDMA frame 
(scheduled access period) schedules, and carrier sensing is 
performed even for scheduled transmissions. The 
combination of a TDMA and CSMA frame forms what we 
call a superframe. Several superframes are repeated between 
two beacons, as illustrated in Figure 6, where a schedule 
packet typically follows a beacon.  

The aim of the CSMA frame is to allow for the 
transmission of event data packets that are generated by 
sensors but have not been allocated slots to be scheduled yet. 
Other scenarios arise: management, routing, and event data 
from new nodes that suddenly require transport. One other 
scenario that is commonly experienced in our testbed is new 
event data appears on a path due to route changes that occur 
due to radio vagaries. The sink detects these events using its 
traffic measurement algorithm. Another reason we always 
offer some CSMA access in the intensity region is to support 
the transmissions of asynchronous management and control 
packets such as routing, hello messages, and packet 
retransmissions for event data packets that are not 
successfully transmitted during the TDMA frame. Note that 
the retransmission policy is only an optional part of the 
funneling-MAC that can be activated should link reliability 
be required. 

The beacon delivered to f-nodes includes all the 
necessary frame timing information for the f-nodes to 
correctly schedule their traffic or contend for the CSMA 
access in a superframe. Note that from Figure 6 the 
superframe duration is fixed while TDMA duration changes 
dynamically. The superframe duration has no significant 
impact on the performance because the sink adapts the 
schedule to the superframe duration. The sink measures the 
incoming traffic every superframe and computes the 
schedule based on the results of sampling process, as 
described in Section 4.2. The TDMA duration changes when 
the sampled traffic rate at the sink changes. If the traffic load 
increases sufficiently, the sink allocates more slots in a 
superframe so that the TDMA duration grows and more 
events get scheduled in the intensity region. The portion of a 
superframe that is not used by TDMA is allocated to the 
CSMA frame. In our implementation, we limit the maximum 
ratio of TDMA/CSMA in a superframe to 80% so that at 
least there is a minimum allocation of CSMA to support 
control packets and unscheduled data packets, as discussed. 

The funneling-MAC improves robustness by performing 
carrier sensing even for scheduled transmissions to avoid 
possible collisions in transmission anomalies such as in the 
presence of nodes inside the intensity region that do not 
receive beacons nor meta-schedule advertisements, as 
discussed in Section 4.4. Finally, in terms of framing we note 
that the funneling-MAC uses the low power listening (LPL) 
algorithm and preamble technique proposed in B-MAC [3] to 
reduce energy consumption for sensor networks with low 
duty cycle. However, unlike B-MAC f-nodes do not need to 
transmit a long preamble in the LPL mode because their 
communications are synchronized by the superframe. This 
frees f-nodes to use the standard short radio preamble. 
During TDMA access f-nodes wake-up at the beginning of 
their scheduled listening slot and in the case of CSMA frame 
f-nodes wake-up periodically based on the wake up periods 
suggested in [3]. During CSMA access, f-nodes can transmit 
with the standard preamble because all f-nodes can wake-up 
and listen at the same time. The nodes outside the intensity 
region use the long preamble used in the LPL mode before 
transmitting a data. 

4.4 Meta-Schedule Advertisement 
A number of MAC interference issues arise with the 

funneling-MAC due to its hybrid MAC nature and its 
broadcasting of sink signaling (i.e., beaconing, schedules) at 
potentially high power over the complete intensity region. In 
order not to interfere with any on-going sensor 
communications in the network (e.g., CSMA forwarding 
between sensors toward the sink) by such a high power sink 
transmission, nodes must be capable of learning the 
superframe timing details from beacon messages. Another 
interference issue arises where nodes inside the intensity 
region may not receive beacons (e.g., due to fading, 
asymmetric links, etc.) and therefore can become potential 
“interferers” by not having the timing and framing 
information carried in the beacon. One final scenario can 
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occur where nodes outside of the boundary of the intensity 
region may not be aware of the funneling-MAC frame timing 
because they do not receive beacons, and as a result, also 
represent potential interferers. To deal with these interference 
scenarios (i.e., between scheduled and random access 
transmissions) the funneling-MAC embeds a low cost meta-
schedule advertisement in the first event data packet 
transmitted by f-nodes, after a new schedule is received.   

All f-nodes that received the beacon and schedule 
embed the meta-schedule in the first event data packet 
transmitted toward the sink every beacon interval. The mini-
schedule contains the following information: superframe 
duration, TDMA duration, time left of the current TDMA 
frame, and number of superframe repetitions before the 
beacon interval expires. The meta-schedule is only 4 bytes in 
length.  

Nodes that are either inside the intensity region and miss 
a beacon or outside the intensity region but near the 
boundary can overhear the transmission of meta-schedule 
carried in a data event. Reception of a meta-schedule allows 
these nodes to transmit in the CSMA portion of the current 
superframe mitigating the likelihood of interfering. Now, 
let’s consider a case when an intermediate node of a path 
inside the intensity region misses a beacon. For example, 
node F in Figure 4 misses a beacon while the path A-F-E-D 
is scheduled. The path-head f-node A sends a data packet 
with meta-schedule and node F receives the data packet with 
meta-schedule. This way, node F can determine that the data 
packet is scheduled at the current time slot so node F 
transmits the data packet immediately. Node F uses CSMA 
frame for its other data packets. Now, let us assume the path 
A-F-E-D is not yet scheduled and the path-head f-node A 
transmits a data packet with its path information field using 
CSMA frame. Node F receives the data packet with path 
information field and node F updates the number of hops 
field and forwards the data packet so the sink can still 
schedule the path A-F-E-D. Therefore, the meta-schedule 
advertisement allows seamless interoperation between 
TDMA inside the intensity region, and CSMA operating 
outside of that region. The use of meta-schedules in this 
manner resolves potential erroneous behavior. 

4.5 Dynamic Depth-Tuning 
The dynamic depth-tuning algorithm enables the 

funneling-MAC to maximize the throughput and minimize 
the packet loss at the sink point. The sink regulates the 
boundary of the intensity area where TDMA is performed by 
controlling the transmission power of the broadcast beacon. 
The sink can dynamically change the transmission power of 
the beacon and therefore the area in which TDMA is active 
by determining the optimal depth d of the intensity area in 
the funnel. We analytically analyzed how the funneling-
MAC should determine the optimal depth of the intensity 
region. Due to space limitations, we do not include the 
analysis here (see the Appendix in [23] for the details on the 
analysis). The Appendix in [23] provides a number of 
valuable insights that motivate the operations of dynamic 

depth-tuning algorithm. In [23] it is shown that the optimal 
value of d to maximize throughput and minimize packet loss 
can be determined at the sink. This result drives the design of 
the dynamic depth-tuning algorithm. Based on the analysis in 
the Appendix [23], we propose the following dynamic depth-
tuning algorithm. Suppose that A is the total number of slots 
scheduled, Amax is the number of the maximum available slots 
in one superframe, and that dmax is the upper bound of the 
depth d; then the sink chooses d=1 when the network is 
saturated, that is, where A>Amax even with d=1, and if the 
network is not saturated, then the sink gradually increases d 
while A<Amax and stop increasing d when A>Amax or d>dmax. 
Since the depth is controlled by the transmission power of 
beacon signal at the sink, there is an upper bound dmax that 
matches the maximum transmission power available at the 
sink. We verified in [23] that when A=Amax, the depth is at 
the optimal point where the network achieves both the 
maximum throughput and minimum loss. This analytical 
result justifies our approach of adjusting the power to reach 
that optimality. 

The actual operation of dynamic depth tuning algorithm 
is as follows. When the sink starts up, it chooses the 
transmission power as ordinary sensor nodes operating in the 
network – this is where all the motes and sink use a common 
power. The sink monitors the channel and computes the 
schedule with size A as discussed in Section 4.2. At this point, 
two different cases may occur: either A≤Amax or A>Amax. If 
A>Amax, then the sink does not increase the transmission 
power for the next beacon transmission. If A<Amax, then the 
sink increments the transmission power of the next beacon 
by one power level and monitors the performance of channel. 
The sink keeps incrementing the transmission power in this 
manner until A>Amax or the transmission power reaches its 
device-limited maximum. If A>Amax, then the sink 
decrements the transmission power of the next transmitted 
beacon by one level. If the transmission power reaches the 
maximum and A<Amax, then the sink keeps the transmission 
power at the maximum. The sink performs this dynamic 
depth-tuning algorithm on a continued basis, regulating the 
beacon transmission power accordingly. The pseudo code for 
dynamic depth-tuning algorithm is presented in [23]. 
5. Sensor Testbed Evaluation 
      We take an experimental approach to the evaluation of 
the funneling-MAC and present a number of experiments 
that give insights into the performance tradeoffs of the 
protocol under a wide variety of systems conditions, e.g., 
different traffic conditions, different mote topologies and 
densities (from simple benchmarks to more realistic dense 
grid), and compare the performance of the funneling-MAC 
to the baseline TinyOS B-MAC protocol and the Z-MAC 
[18]. 

5.1 Experimental Set-up 
We implement the funneling-MAC on mica-2 motes 

using the default TinyOS [11] MintRoute routing protocol 
and Surge applications to drive different source rates. The bit 



 

rate of the radio interface for mica-2 motes is 19.2 kbps. Our 
experimental testbed comprises of a 45 mote dense grid 
deployed in a large laboratory room and is configured, as 
shown in Figure 4 unless specified otherwise. Node spacing 
and transmission power of the sensors are set such that one-
hop neighbors achieve > 80% delivery, while two-hop 
neighbors achieve < 20% delivery. In this way, a fairly strict 
and dense multi-hop radio environment is constructed for 
experimentation. We use the default TinyOS packet size, 
which is 36 bytes. 
     We implement the funneling-MAC on B-MAC, which 
provides the baseline CSMA system. Note, that we do not 
use fixed routes as in [10] because we are interested in how 
well the protocols under comparison, B-MAC, Z-MAC, and 
the funneling-MAC performs in a realistic networking 
scenario where time-varying radio conditions can impact 
coverage, link quality, and routing paths. For B-MAC and Z-
MAC, we use the default settings described in [3] [10], 
respectively. The parameter settings of the funneling-MAC 
are presented in Table 1. The settings that are not specified in 
Table 1 are the settings used in [3] as the funneling-MAC is 
built on top of B-MAC. For all experiments, we turned off 
the low power listening and use the same preamble size for 
B-MAC, Z-MAC, and the funneling-MAC for fair 
comparison. We adjusted the data transmission power of 
sensor nodes at -10 dBm in order to build up a strict multi-
hop network (up to 5 hops), as discussed in Section 2. The 
funneling-MAC dynamically tunes the power of beacon and 
schedule at the sink node from -10 dBm to 5 dBm (i.e., the 
maximum transmission power of the CC1000 transceiver 
[13]) in increments or decrements the power of 1 dBm which 
is the unit power level, as reported in [13]. 
 

Table 1. Funneling-MAC experimental parameters 
 

Parameter Value 
Default data transmission power (Cdata) -10 dBm 
Beacon and schedule transmission power (Ccontrol) -10 ~ 5 dBm
Step size of power for dynamic depth-tuning (Cunit) 1 dBm 
Beacon interval (tb) 20 sec 
Superframe size (tf) 1 sec 
Slot size (ts) 30 msec 
Moving average factor (α) 0.9 

 

The beacon interval is initially computed based on the 
mote’s clock accuracy and the required accuracy of 
synchronization for scheduling on the media. We run some 
experiments with various values for the beacon interval and 
we experimentally determine a beacon interval of 20 seconds 
gives the best performance in terms of throughput with the 
necessary accuracy. We also experiment with lazy-beaconing 
where we trade performance for a larger beacon interval. We 
observed that we can push the beacon interval out to 50 
seconds with only a marginal drop in throughput 
performance. However, for beacon intervals greater than 50 
seconds we register a sharp reduction in throughput 
measured at the sink of approximately 30%, showing that the 
loss of scheduling accuracy and schedule drift is too costly 
for the further reduction in signaling overhead. For the 

experiments reported in this section we chose a beacon 
interval of 20 seconds for increased scheduling accuracy and 
to remove any likelihood of schedule drift. Table 1 shows the 
set of experimental parameters for the funneling-MAC 
testbed that are consistently applied across all experiments. 

5.2 Impact of Depth-Tuning 
We are interested in evaluating the impact of the depth of 

the intensity region on the measured throughput of the sensor 
network testbed for the following reasons. First, in order to 
verify that by pushing the TDMA area (i.e., the intensity 
region) beyond the optimal depth will only degrade in 
measured throughput at the sink. Second, to show that the 
dynamic depth-tuning algorithm is valid when implemented 
in a real sensor testbed. To compare dynamic depth-tuning to 
the simple case of just scheduling the last hop (i.e., one hop 
from the sink) we fix the dynamic depth-tuning algorithm to 
one hop only. Note, that the results in Section 2 indicate that 
most packet loss occurs over the last hop to the sink. 
Following this logic, we consider a ‘baseline algorithm’ as 
having a fixed depth of one, which only schedules the last 
hop, and an ‘optimized algorithm’ that schedules additional 
hops using the fully enabled dynamic depth tuning algorithm. 
In what follows, we show that the optimized algorithm 
achieves considerably better performance than the simple 
baseline algorithm does. 

 In order to observe the impact of depth on performance, 
we fix the beacon transmission power to the values of -10, -8, 
-6, -4, 0, and 4 dBm, respectively. The depth of the intensity 
region is an approximate function of the beacon transmission 
power used. In essence, we can approximate the depth in 
terms of the beacon transmission power coverage distance in 
terms of number of hops from the sink for our grid network. 
For example, if the sink transmits a beacon using the default 
transmission power of ordinary sensor nodes, this will 
approximate coverage of one hop from the sink. Likewise, 
we can expect that a beacon will have a greater coverage 
than one hop for higher transmission powers. The metric that 
we observe with each beacon power setup is the throughput. 
We define the choke point throughput of the sink as the 
amount of data in terms of bits received at sink over a 1 
second period. In these experiments, all 44 nodes are sources. 
We run experiments for 3 different source rates low, medium, 
high: 0.2 pps, 1 pps, 2 pps, respectively. 

We plot the results in Figure 7. For each of the source 
rates we measured the sink throughput for increasing beacon 
power (which approximates the depth of the intensity region 
coverage). The result indicates that there is an approximation 
of the optimal transmission power for beacons (i.e., optimal 
depth) that maximize the throughput such that if we use a 
larger transmission power than the optimal power, the 
throughput measured at the sink degrades. This means that if 
we increase the TDMA area further the optimal depth by 
using more power then it degrades the measured throughput.  

Figure 7 validates the dynamic depth-tuning algorithm. 
According to the analytical result in the Appendix in [23], 
the optimal depth is close to 1 hop (i.e., the beacon 



 

transmission power is the same as the motes data event 
transmission power) when the network is saturated, while the 
optimal depth is greater than 1 hop when the network is not 
saturated. In fact, if we set the source rate to 2 pps, which 
drives the network toward saturation, the optimal beacon 
transmission power from our experimental result is -8 dBm, 
which provides radio coverage close to 1 hop (i.e., the mote’s 
data event transmission power of -10 dBm). We observe in 
Figure 7 that the optimal depth is greater than 1 hop when the 
network is not saturated (i.e., 0 dBm for 1 pps, and 4 dBm or 
greater for 0.2 pps). These experimental observations 
validate the analytical observation in [23] and thus provide a 
sound basis for the dynamic depth-tuning algorithm. 

In what follows, we quantify how much gain the 
baseline and optimized algorithms can achieve over B-MAC.  
From Figure 13(c), we can observe that the throughput of B-
MAC for 0.2 pps, 1 pps, and 2 pps source traffic rates is 272 
bps, 1099 bps, and 1631 bps, respectively (we discuss this 
plot further in Section 5.5).  The throughput related to the -10 
dBm x-axis value in Figure 7 (i.e., 1583 bps for 2 pps, 1511 
bps for 1 pps, and 645 bps for 0.2 pps) represent the 
performance of the funneling-MAC’s baseline algorithm that 
schedules only the last hop with the depth fixed by -10 dBm 
beacon power. The throughput shown in Figure 7 at the 
optimal beacon transmission powers (i.e., 1872 bps at -8 
dBm for 2 pps, 1925 bps at 0 dBm for 1 pps, and 1191 bps at 
4 dBm or greater for 0.2 pps) represent the performance of 
the funneling-MAC’s optimized algorithm (i.e., when 
dynamic depth-tuning is fully enabled). The gain over B-
MAC for the baseline algorithm with 0.2 pps, 1 pps, and 2 
pps is 124%, 37%, and 0%, respectively. The gain over B-
MAC for the optimized algorithm with 0.2 pps, 1 pps, and 2 
pps is 338%, 75%, and 15%, respectively. For all source 
traffic rates (viz. 0.2 pps, 1 pps, and 2 pps) the optimized 
algorithm performs better than the baseline algorithm. More 
importantly, the baseline algorithm does not achieve any gain 
over B-MAC when the source rate is 2 pps. This result 
indicates that the baseline algorithm provides some gain that 
may be sufficient for simple low complexity deployments 
(i.e., schedule only the last hop) but the optimized algorithm 
provides considerably better performance despite that the 
optimized algorithm comes with some added complexity 
over the baseline algorithm.  As a result, we recommend 

using dynamic depth-tuning in its fully enabled form as a 
default. 

5.3 Impact of Boundary Node Interference 
In what follows, we show that the meta-schedule 

advertisement is effective at dealing with the interference 
scenarios discussed in Section 4.4. We study the impact of 
abruptly changing the depth of the intensity region on 
boundary node behavior and the measured sink throughput 
performance. In this experiment meta-schedule 
advertisements exploit the broadcast nature of the radio 
medium, where nodes receive the embedded meta-schedule 
simply by overhearing data event packets with embedded 
meta-schedules sent by neighboring nodes.  The use of meta-
schedule allow for the co-existence of TDMA inside the 
intensity region and pure CSMA outside that region. 

We evaluate the behavior of nodes at the boundary of the 
intensity region for some interfering scenarios. We set up an 
experiment that studies the impact of boundary variability. In 
this experiment the sink changes the beacon transmission 
power for every beacon by selecting the transmission power 
between two values in turn. We choose the two beacon 
transmission power values -6 dBm and -8 dBm such that the 
boundary of the intensity region falls approximately across 
the center of the grid testbed where there is a higher density 
of nodes that will be included in TDMA scheduling (at -8 
dBm) and then dropped out (at -6 dBm) as they fall outside 
of the intensity region and operate without the framing and 
timing information, as shown in Figure 4. 

We run the experiment of switching between -6 dBm and 
-8 dBm for a number of different source data rates.  Figure 8 
shows the various source rates and the corresponding 
throughput performance measured at the sink. This is for the 
case where all the 44 motes are sources. We study two  
experiments, one called variable power where the 
transmission is alternating between -6 dBm and -8dBm, and 
one called fixed power where we fix the beacon transmission 
power to -7 dBm which represents the average of the 
variable case. The comparison of the throughput measured 
on each experiment is shown in Figure 8. We run the 
experiment five times for each data rate and calculate 95% 
confidence interval. From the plot we can see that the 
measured throughput for fixed and variable power cases are 
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almost the same (i.e., within the confidence interval of each 
other). This result indicates that boundary variability stressed 
in this test has little impact on the ability of the funneling-
MAC to operate stably.  As part of this test we instrument the 
motes to record if the beacon timeout occurred and the mote 
had no framing information but overheard meta-schedules. 
We found that 8% of the boundary motes fall into this 
category; that is, motes that are consistently inside and 
outside of the intensity region as the beacon transmission 
power toggled between -6 dBm and -8 dBm at the beacon 
interval. This indicates that these 8% of nodes would have 
become interfering modes if they had not successfully 
overhead embedded meta-schedule advertisements. 

5.4 Loss Rate Distribution 
In Section 2, we quantify the impact of the funneling 

effect on the packet loss rate distribution for B-MAC. In 
what follows, we now assess the impact of the funneling 
effect on the funneling-MAC. We use the same setup (i.e., 
multi-hop testbed using 45 motes) and metric (i.e., loss rate) 
as in Figure 3. The result is presented in Figure 9. For the 
comparison, we also include the B-MAC result in the figure. 
Figure 9 shows the loss rate across an increasing number of 
hops from the sink. We observe that the funneling effect is 
mitigated by comparing the steepness of the slopes of the 
funneling-MAC and B-MAC curves, respectively. The loss 
rate over the first two hops from the sink is significantly 
different because the funneling effect is active, before both 
curves converge on the same performance at three hops from 
the sink where the funneling effect is no longer present in the 
experiments. After this point both MACs offer similar 
CSMA performance for 3, 4, and 5 hops from the sink. 
However, the loss rate over the first two hops is considerably 
smaller when using funneling-MAC over B-MAC. For 
example, at the higher source rate of 4 pps B-MAC's loss rate 
is 81% at one hop and 40% at two hops from the sink, while 
the funneling-MAC reduces those loss rates to 48% at one 
hop and 22% at two hops for the same source rate. The loss 
rate for the funneling-MAC remains almost the same for 
varying source traffic rates (viz. 0.2 pps, 1 pps, 4 pps) while 
the loss rate for B-MAC varies considerably with source rate 
and across the first two hops from the sink. In the following 

section, we show how this reduction of loss rate in the first 
few hops impacts the overall throughput performance of the 
sensor network. 

5.5 Multi-hop Throughput 
Due to space considerations we do not include the one-

hop and two-hop benchmarks tests that verify the correctness 
of our testbed setup by reproducing the results achieved with 
B-MAC [3] and Z-MAC [10] in comparison to the 
funneling-MAC performance. See [23] for the details of 
these results. The benchmark results discussed in [23] 
presents the same pattern reported for B-MAC [3] and Z-
MAC [10] but with minor difference in scale. In addition, the 
results show that the funneling-MAC achieves almost the 
same throughput as Z-MAC and outperforms B-MAC. In 
what follows, we compare the throughput of B-MAC, Z-
MAC, and the funneling-MAC in our multi-hop testbed 
consisted of 45 motes. 

Figure 10 shows the trace of the throughput of the 
funneling-MAC, Z-MAC, and B-MAC over time for the 
experiment where all 44 nodes are sources generating 5 pps. 
This scenario represents a heavy traffic load. We run the 
experiments five times with this setup and compute the 
average throughput with 95% confidence interval. At start of 
the experiment, Z-MAC and the funneling-MAC perform 
equally while B-MAC performs worst. It is worth noting that 
the routing paths from all sources are not completely 
established until approximately 20 minutes into experiment.  
Protocols such as MintRoute take a significant amount of 
time with the default settings to create sufficient routing state 
[14] before the performance of the network stabilizes at 
around 20 minutes into the experiment. When a node does 
not have a route it sends the event data to the broadcast 
channel, which contributes to congestion and degrades the 
throughput further. As more source nodes acquire routes and 
path, the funneling-MAC and B-MAC gain performance in 
terms of throughput. The funneling-MAC outperforms B-
MAC consistently over time.  

Schedule Drift: We can observe from Figure 10 that Z-
MAC throughput steadily degrades as time increases. In [10] 
it is noted that Z-MAC runs DRAND only at the beginning 
and not periodically. Hence it is possible that the reason Z-

Figure 12. Trace of throughput over 
running time for Z-MAC 
with/without periodic DRAND 
(Dartmouth College Testbed)

Figure 10. Trace of throughput over 
running time for the funneling-MAC, 
B-MAC, and Z-MAC 
(Dartmouth College Testbed)

Figure 11. Trace of throughput over 
running time for the funneling-MAC, 
B-MAC, and Z-MAC 
(Columbia University Testbed)
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MAC degrades is because it is susceptible to schedule drift 
where the initial schedule computed by DRAND is no longer 
valid due to time-varying radio conditions and possibly route 
changes, forcing Z-MAC to fall back to the performance of 
CSMA, as shown in the plot. To verify that the Z-MAC 
throughput degradation is not a product of our dense grid 
sensor testbed setup at Dartmouth College we ran the same 
experiment on a more sparse sensor testbed at Columbia 
University [23]. The Columbia testbed consists of only 31 
mica-2 motes. The transmission power of each mote is set to 
-10dbm, and at this power, on average all nodes have at least 
7 nodes from which the packet delivery ratio is at least 80%. 
The result presented in Figure 11 show that the Z-MAC 
throughput degradation is reproducible on the Columbia 
University testbed although the scale and timing of the 
degradation are different. For more details and results from 
the Columbia University testbed experiments see [23]. 

To confirm that the throughput degradation is due to 
schedule drift, we run Z-MAC with DRAND running at the 
start of the experiment and then every 12 minutes. After each 
DRAND run, each node reports its neighborhood table to the 
sink. We analyzed these reports of neighbor table from each 
node. Each node keeps a table that contains the IDs of its 
neighbors in its two-hop transmission range. The schedule 
(computed by DRAND) is the result of the interaction 
between the nodes within the two-hop transmission range. 
Hence, the neighbor table is a good indication of the validity 
of the schedule. Analyzing these reports, we observe that 
76.7% of the nodes experience some changes in their 
neighbor table after each DRAND re-run. 

In order to quantify the degree of change in 
neighborhood, we define a metric for the degree of change in 
the neighbor table of a node as,  

ij

jiij
ij H

DD
X

+
= ,                             (1) 

where Ti is the neighbor table of a node after i-th 
DRAND run, Dij is the number of nodes that are in neighbor 
table Ti but not in table Tj, and Dji is the number of nodes that 
are in neighbor table Tj but not in Ti, and Hij is the number of 
nodes that are in neighbor table Ti OR Tj. 

After calculating X12, X23, X34, and X45 of each node, we 
calculated the average of X12, X23, X34, and X45 among the 
nodes. From the experiment, the average of X12 (i.e., the 

degree of changes between the first DRAND run at initial 
time and the second DRAND) is 45.5%. The average of X23 
is 25.3%, the average of X34 is 30.5%, and the average of X45 
is 31.0%. 

The fact that the majority (76.7%) of the nodes 
experience some change in their neighbor table and the fact 
that average degree of change is considerable (ranging from 
25.3% to 45.5%) indicates that the schedule computed by 
DRAND at the start of the experiment does not take into 
account the changes in neighborhood over the time. The 
neighborhood change is due to radio characteristic variability 
and environmental factors. 

The throughput comparison between Z-MAC without 
periodic DRAND and Z-MAC with periodic DRAND is 
shown in Figure 12. The solid lines in Figure 12 indicate that 
Z-MAC with periodic DRAND does not suffer from the 
throughput degradation except for the time DRAND is 
running. During each DRAND run (at 12, 24, 36, and 48 
minute in the experiment), the throughput degrades below 
700 bps. At the beginning of the DRAND run, the DRAND 
neighbor table is initialized (zero entry in the table), so the 
network operates just like B-MAC during DRAND run. In 
addition, the signaling overhead of DRAND contributes to 
the degradation. It is shown in the Section 5.6 that the 
signaling overhead of DRAND is large. As soon as the 
DRAND run is complete, the throughput returns back to 
1000 bps or greater; the value of which is the same level as 
the throughput just before the DRAND run begins. This 
result (that Z-MAC with periodic DRAND does not suffer 
from throughput degradation) indicates that the schedule 
computed by DRAND running every 12 minutes is 
responsive to neighbor changes for our network 
configuration and conditions. Hence, this result indicates that 
the cause of throughput degradation is due to the schedule 
drift where the initial schedule computed by DRAND is no 
longer valid. 

Varying Workload: Figure 13 compares the throughput 
of the funneling-MAC, Z-MAC, and B-MAC over varying 
number of sources and data rates. We varied the number of 
sources each time we run an experiment. When the number 
of sources is less than 44, the sources are randomly chosen 
among 44 sensor nodes in the grid. We also varied the packet 
generation rates of the sources each time we run a test. The 

(a) Varying number of sources                (b) 16 sources with varying data rate              (c) 44 sources with varying data rate 
Figure 13. Throughput comparison of the funneling-MAC, Z-MAC, and B-MAC 
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x-axis values represent the number of packets generated per 
source node. 

From Figure 13 we note that the overall throughput 
results show that the funneling-MAC consistently achieves 
greater throughput than B-MAC and Z-MAC under various 
conditions, such as changing number of sources and 
changing data rates (from very low rates to very high rates). 
The throughput curves for Z-MAC and B-MAC shown in 
Figure 13 follow the same general pattern in [10].  For light 
traffic, Z-MAC and B-MAC perform the same, while for 
high loads Z-MAC outperforms B-MAC. Note that for data 
rates higher than 5 pps, MintRoute protocol cannot setup 
routing paths for any node, thus, after this rate the network 
goes into collapse as clearly indicated in Figure 13 (b).  

There are two reasons why Z-MAC only shows marginal 
improvements over B-MAC in the presence of the funneling 
effect while the funneling-MAC outperforms both B-MAC 
and Z-MAC by a large margin. One of the reasons is the 
schedule-drift associated with Z-MAC. The other reason is 
currently that DRAND cannot take into account the 
funneling effect and the need to allocate more slots to nodes 
in the intensity region. This is because DRAND is a pure 
distributed coloring algorithm that does not take into account 
the existence of the central entity (i.e., the sink) and the 
funneling traffic pattern. Hence, DRAND can only allocate 
the same amount of slots among its two hop neighbors. In 
contrast, the funneling-MAC is capable of allocating slots 
based on the funneling traffic pattern so that the funneling-
MAC allocates more slots to the nodes closer to the sink 
providing a big win in performance of the measured 
throughput at the sink.  

We also note that the funneling-MAC performs better 
than Z-MAC and B-MAC even under light traffic conditions 
where the funneling effect is evident. So even under light 
load B-MAC and Z-MAC are not capable of mitigating the 
negative effects of funneling. 

5.6 Energy Tax and Signaling Overhead Cost 
In order to analyze the cost of delivering data packets to 

the sink, we define the energy tax Etax as, 

nD
CDE

d

tt
tax ⋅

+
=                                      (2) 

where Dt is the amount of data packets transmitted (either by 
source nodes or intermediate nodes) in number of bits, Ct is 

the total amount of control packets transmitted in number of 
bits, Dd is the amount of packets delivered to the sink, and n 
is the number of nodes in the network. We measure the 
signaling overhead cost Esig as, 

nD
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d

t
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=                                      (3) 

The energy tax includes the overhead of control 
messages if a MAC protocol introduces some control 
messages. The funneling-MAC introduces signaling for 
beacon packets, schedule packets, path information field, and 
meta-schedule, which we considered when computing the 
energy tax. B-MAC does not introduce any control packets. 
Z-MAC introduces sync packets for local synchronization. In 
the Figures 14 and 15 we consider Z-MAC with and without 
the DRAND overhead. If a data packet has to travel i hops to 
reach the sink, the energy used in delivering this packet i 
hops is included in the energy tax as well. If a data packet is 
lost after traveling j hops, the energy used in delivering this 
packet j hops is included in the energy tax. The signaling 
overhead cost only considers the overhead of control 
messages and not the cost due to packet loss. The testbed 
settings are the same as the settings in Section 5.5. 

The funneling-MAC introduces more signaling 
overhead compared to B-MAC but the funneling-MAC 
reduces the energy wasted by reducing the packet losses to 
the extent that the funneling-MAC has lower or equal energy 
tax compared to B-MAC despite its signaling overhead, as 
we can see from Figure 14. B-MAC does not perform well 
when the data rate is greater than 2 pps resulting in a high 
energy tax for B-MAC. In contrast, the funneling-MAC 
exhibits consistently lower energy tax. Z-MAC also reduces 
the energy wasted by packet losses to the extent that Z-MAC 
has a lower or equal energy tax compared to B-MAC despite 
the overhead of sync packets. However, Z-MAC has a 
greater energy tax than the funneling-MAC when the data 
rate is greater than 2 pps. This is because the funneling effect 
impacts Z-MAC’s overall energy tax as packet loss increases. 
In summary, our results indicate that even though the 
funneling-MAC has  more signaling in its basic protocol than 
the other protocols, it is a more energy efficient than Z-MAC 
and B-MAC. The signaling overhead cost of the funneling-
MAC and Z-MAC are similar if we do not consider the 
overhead of running DRAND. Also from the schedule drift 
exhibited in Figures 10, 11 and 12 for Z-MAC it would be 

Figure 15. Signaling overhead cost 
of the funneling-MAC and Z-MAC 

(a) Varying number of sources with 5 pps           (b) 44 sources with varying data rate 

Figure 14. Energy tax comparison of the funneling-MAC, Z-MAC, and B-MAC 
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necessary to re-run DRAND to boost its performance and 
resolve the schedule drift.  Based on the observations from 
Figure 12, it would be costly to re-run DRAND every 12 
minutes to maintain performance. If we do this then the cost 
of operating Z-MAC and its DRAND mechanism increases 
significantly, as indicated in Figure 15. Clearly, it is not 
tenable to re-run DRAND periodically because of the 
significant overhead incurred; this is clearly shown in Figure 
15. 

6. Conclusions 
The main contributions of this paper are as follows. We 

show that by implementing a simple hybrid TDMA/CSMA 
scheme in the intensity region, under the control of the sink, 
can significantly improve the throughput and loss 
performance of sensor networks, even under lightly loaded 
traffic conditions, and for small intensity region depths of 
one or two hops. We also show experimentally that multiple 
MACs can coexist in the sensor network, specifically, we can 
run a hybrid TDMA/CSMA in the intensity region which 
seamlessly coexists with pure CSMA outside of that region, 
in addition, any potential interference caused by dynamically 
increasing or decreasing the intensity region (i.e., the 
TDMA/CSMA region) is effectively managed by the 
funneling-MAC. We show that the funneling-MAC out-
performs B-MAC and Z-MAC under a wide variety of 
network and traffic conditions. The TinyOS source code for 
the funneling-MAC is available from the web [22]. 
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