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Abstract—Zero Configuration Networking (Zeroconf) assigns
IP addresses and host names, and discovers service without a
central server. Zeroconf can be used in wireless mobile ad-hoc
networks which are based on IEEE 802.11 and IP. However,
Zeroconf has problems in mobile ad-hoc networks as it cannot
detect changes in the network topology. In highly mobile net-
works, Zeroconf causes network overhead while discovering new
services. In this paper, we propose an algorithm to accelerate
service discovery for mobile ad-hoc networks. Our algorithm
involves the monitoring of network interface changes that occur
when a device with IEEE 802.11 enabled joins a new network
area. This algorithm allows users to discover network topology
changes and new services in real-time while minimizing network
overhead.

I. INTRODUCTION

When mobile devices are intermittently connected to the
Internet, information can be shared with peers using ad-
hoc networking. These wireless mobile ad-hoc networks do
not have any central servers, such as a DNS server and a
DHCP server, though they primarily run on IP. For these
reasons, mobile ad-hoc networks require Zero Configuration
Networking (Zeroconf) [1]. Zeroconf provides for the assign-
ment of IP addresses, host naming, and service discovery
without any central servers or human adminstration. There
are several applications that are designed for wireless mobile
ad-hoc network and intermittently connected networks. These
applications provide a variety of services. Service discovery is
a vital part of those applications, as it allows those applications
to automatically discover services as well as announce their
services. Therefore, Zeroconf plays an important role in order
for such applications to work properly.
However, Zeroconf suffers from problems in highly mobile

ad-hoc networks. Thus, the frequency of devices joining and
leaving a local ad-hoc network is very high. Network topology
changes are not announced to other devices, and there is
no algorithm in Zeroconf to detect these frequent network
topology changes. When a device joins a new network area,
the network resources of the node, such as IP address and host
name in the area, may possibly conflict with the attributes of
the existing members of that network.
Another potential problem is that services should be an-

nounced or browsed for frequently to be discovered in a
highly mobile network, but this causes high network overhead.
Bonjour [2], the most popular implementation of Zeroconf,
uses an exponential back-off scheme to reduce overhead, but

it causes slow detection as well as loss of discovery for new
services.
We analyze the relationship between the interval of service

browsing, average residence time of devices in a local ad-
hoc network, and the probability that new services announced
by new joining peers are not discovered. We then propose a
new algorithm that accelerates the service discovery protocol
and allows devices to discover network topology changes
and new services in real time while minimizing network
overhead. In our algorithm, each device can detect whether
it has joined a new network area. Monitoring changes to
the network interface allows a device to detect the network
topology changes. If a node detects that it has joined a new
network, it resolves possibly conflicting of IP address and host
names, and announces or browses for services.
The remainder of this paper is structured as follows. In

section II, we introduce Zeroconf. Section III discusses poten-
tial problems of Zeroconf in mobile ad-hoc networks. Section
IV describes our new service discovery algorithm. Section
V describes implementation and performance of our new
algorithm. Finally, we describe related work in Section VI.

II. OVERVIEW OF ZEROCONF
The IETF Zero Configuration Networking (Zeroconf) Work-

ing Group [1] has proposed four main requirements [3] for
Zeroconf: IP interface configuration, translation between host
name and IP address, IP multicast address allocation, service
discovery. Zeroconf specification is complete about IP inter-
face configuration, but is not complete about the other require-
ments. In January 2007, Link-local Multicast Name Resolution
(LLMNR) [5] was approved as an informational RFC by the
IETF to address the name resolution requirement. Currently,
LLMNR is only implemented on Windows CE. Bonjour [2]
is one of most popular implementations of Zeroconf, and it
satisfies the requirements of Zeroconf.

A. IP interface configuration
The configuration of IP address and netmask without a

central server is key to ad-hoc networking operations. Zeroconf
specifies the use of the IPv4 link-local address [4], which
includes address selection and address conflict resolution.
After a host randomly selects an IP address within the
169.254/16 subnet, it announces this address by broadcasting
ARP announcements in the local area to detect possible IP
address conflicts. If the host receives an ARP response from



another host which already uses this IP address, it will select
another random IP address. Windows and Mac OS implement
the auto-configuration of IPv4 link-local addressing. Linux and
a few other operating systems will require installation of a
daemon that implements link-local addresses.

B. Translation between host name and IP address
Since a host name is much more user-friendly than an

IP address, Zeroconf also requires auto-configuration of a
host name without a central server. The Zeroconf host name
protocol allows host names to be mapped into IP addresses and
vice versa. In addition, it resolves naming conflicts. Bonjour
has proposed Multicast DNS (mDNS) [6] for host naming in a
local area network. Multicast DNS allows translation between
names and IP addresses and provides DNS-like operation
without a central DNS server.
In mDNS, each device first selects their own local host

name. The form of the name is ”single-dns-label.local.”, and
the ”.local.” means that it is link-local and meaningful only
on local network. The naming conflict resolution is similar to
IPv4 link-local address conflict resolution. A host announces
the name in local area by multicasting to detect possible name
conflicts.

C. IP multicast address allocation
An IP multicast address allows the efficient use of band-

width since all multicast receivers can receive multicast pack-
ets. The range of IP multicast address is from 224.0.0.0 to
239.255.255.255. Bonjour uses the mDNS multicast address,
224.0.0.251, as its IP multicast address [6].

D. Service discovery
Zeroconf allows users to discover services and choose the

services without knowing the location of the service provider
in advance to communicate with the providers. Bonjour has
proposed multicast DNS-Based service discovery (mDNS-SD)
[7] for service discovery for Zeroconf. This service discovery
protocol allows users to find all service instances of a particu-
lar service type and to resolve IP address, port number and ad-
ditional information for the service using PTR, SRV and TXT
records. The PTR lookup of the format hServicei.hDomaini
is used to obtain all service instances which have the same
hServicei.hDomaini. The name of a service instance is of the
format hInstancei.hServicei.hDomaini.
The SRV record provides the port number and IP address

of the service provider. TXT records are used for storing
additional information about services as attribute-value pairs.

III. ZEROCONF IN MOBILE AD-HOC NETWORKS
A. Network topology changes
Since the topology of mobile ad-hoc networks changes

frequently, network resources such as IP addresses and local
host names should be announced to detect possible conflicts in
the new network area [3]. However, Zeroconf does not include
an algorithm to detect network topology changes. Furthermore,
Zeroconf does not specify an algorithm to resolve possible
conflicts during the topology changes.
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Fig. 1. Mobile node joins and leaves a local network

B. Network traffic overhead

In highly mobile networks, devices frequently join and leave
a local network. In this scenario, if the services of mobile
nodes are not frequently announced or looked up, the services
might not be discovered by other mobile nodes. Thus, services
should be announced and looked up frequently. However, this
causes high network overhead. We analyze the relationship
between the probability that new services announcements are
not discovered, average residence duration of devices in a local
area and the average interval of service announcing or brows-
ing in this section. We assume that the service announcing
and browsing interval follows an exponential distribution with
rate α; the node arrival rate to a local ad-hoc area follows an
exponential distribution with rate λ; the node residence time
follows an exponential distribution with rate μ; the number
of nodes in a current local ad-hoc area is n. For simplicity, a
new node A announces a service, and other nodes browse the
service.
Fig. 1 shows a mobile node joins and leaves a local ad-hoc

network with Zeroconf. In Fig. 1, T is the interval between the
last service browse request before a new node A arrives and
the next service browsing request. T is min{T1, T2, ....,Tn},
where Tk is the interval between the next service browsing
request time of node k and the last service browsing time
of node i, where i is the last service browse request before
node A arrives and k is the first service browse request after
node A arrives. X is the residence time of node A. Y is the
interval between node A’s next service announcement time and
its arrival time.
The service loss probability, Q(n), is the probability that

node A cannot hear any browsing requests and does not
announce services during residence in a local area.

Q(n) = Pr(T > X)Pr(Y > X)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Average number of users (! /! )

∀

Average service browsing interval (1/# ) = 1 hour
Average service browsing interval (1/# ) = 30 mins
Average service browsing interval (1/# ) = 20 mins
Average service browsing interval (1/# ) = 10 mins

(b) Average residence time (1/μ) is 30 minutes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average number of users (! /! )

∀

Average service browsing interval (1/# ) = 1 hour
Average service browsing interval (1/# ) = 30 mins
Average service browsing interval (1/# ) = 20 mins
Average service browsing interval (1/# ) = 10 mins

(c) Average residence time (1/μ) is 10 minutes

Fig. 2. The mean service loss probability of new services

The mean service loss probability, θ, is the mean of Q(n).
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Fig. 2 shows the result of the analysis. The figure plots the
mean service loss probability, θ, against the average number
of users. The average number of users affects the mean
service loss probability. If there are many users in the local
network area, the mean service loss probability decreases. It is
reasonable since the browsing requests are not synchronized
between devices, so a new peer has more chances of receiving
browsing requests when there are more users. We can observe
from Fig. 2 that as the average residence time of a mobile
node decreases and the average service browsing interval
increases, the service loss probability, Q(n), increases. We
are interested in the proper average service browsing interval
in the case of a highly mobile environment, such as devices
in cars on a highway. As we can see in Fig. 2(c), if average
service browsing interval is one hour and the average number
of users is four, the mean service loss probability is above
0.5. Therefore, to reduce the probability, service browsing
should be made more frequent. If the average service browsing
interval is 10 minutes, the probability decreases to around 0.1.
This, however, increases network traffic.
There are two phases in discovering services. One of them

is the announcing of new services, and the other is browsing
for and resolving the services. If there are a lot of service
announcements, or if service browsing is done frequently, then
services can be discovered with higher probability. As we can
see in the result of the analysis, the services should be an-
nounced or browsed for frequently in order to be discovered in
highly mobile networks. However, this causes high overhead.
Bonjour uses an exponential back-off scheme [6] to reduce
overhead. The intervals between the subsequent service queries
are doubled; the minimum interval at startup is 1 second, and
it increases exponentially till it reaches the maximum interval

of 1 hour, and it remains constant after that. This exponential
back-off scheme can reduce network overhead, but it causes
slow detection of services or loss of chances to detect services
that arriving peers may have.

IV. ACCELERATING SERVICE DISCOVERY IN ZEROCONF

A. Mobile device joining in IEEE 802.11 ad-hoc networks
The IEEE 802.11 standard [8] specifies when to generate

beacon frames in ad-hoc mode. In ad-hoc mode, all nodes
participate in generating beacon frames. Each node maintains
aBeaconPeriod which specifies the length of a beacon
interval, and its value is typically 100 ms. aBeaconPeriod
is same for all nodes in the same Basic Service Set (BSS). The
beacon period is included in beacon frames and probe response
frames. When nodes join the local ad-hoc network, they
adopt the beacon period. All nodes maintain their own time
synchronization function (TSF) timer for aBeaconPeriod.
The value of the TSF timer is an integer with modulus 264.
When a network interface starts, the value of the TSF timer
is set to zero and incremented every microsecond. The TSF
timer value of all nodes in the same BSS is the same. In ad-
hoc mode, each node has a random backoff timer. It chooses a
random delay uniformly distributed in the range between zero
and twice aCWmin × aSlotTime. The default values of
aCWmin and aSlotTime are 31 and 20 μs, respectively. If
a node receives another beacon frame before the timer expires,
it cancels the remaining random delay as well as the pending
beacon transmission. If no beacon arrives during the random
delay, a node sends a beacon frame. Thus, there is only one
beacon frame in each aBeaconPeriod in the same BSS.
To join a network, each node scans all the channels. There

are two ways of scanning channels: passive scanning and
active scanning. In passive scanning, a node listens to all
channels by hopping each channel. A node listens to beacon
frames which contain a desired Service Set Identification
(SSID). In active scanning, a node generates probe request
frames which contain a desired SSID. The node that generated
the last beacon frame generates the probe response frame for
the response of the probe request frame if the value of SSID in
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the probe request is a broadcast address or matches the address
of its own interface. Beacon frames and probe response frames
contain the TSF timer value in the timestamp field and BSSID.
When a node receives a beacon frame or a probe response
frame, it adopts the information, such as the BSSID and the
TSF timer, only if the SSID in the frame matches and the
value of the timestamp is later than the node’s TSF timer.
Therefore, the BSSID and the TSF timer (of the node which
receives the beacon frame) become the same value as that of
the node which sends the beacon frame.
Fig. 3 shows a new device joining a local ad-hoc network.

In Fig. 3(a), a mobile node A in area BSS1 moves to area
BSS2, and it receives a beacon frame from a node B. The
beacon frame contains the BSSID and the TSF timer value
of BSS2. Before node A joins BSS2, node A’s BSSID is
02:02:2D:0D:6B:0E and the TSF timer value is 1000. The
BSSID value of all nodes in BSS2 is 00:35:0E:3A:5D:5E and
the TSF timer value is 2000. Fig. 3(b) shows node A joining
BSS2. After joining BSS2 networks, node A’s BSSID becomes
00:35:0E:3A:5D:5E. The TSF timer value of node A becomes
2000.

B. Accelerating service discovery in mobile ad-hoc networks
In order to accelerate service discovery, we detect changes

in network topology. When a node detects that it has joined a
new network area, it re-triggers the service discovery protocol.
This enables mobile devices to discover services in real-
time. In addition, the algorithm can reduce network overhead
because devices do not need to announce or browse for
services periodically and frequently. As we can see in Fig. 3,
when two ad-hoc networks are merged, one of the networks
changes its BSSID value. We can check this BSSID value to
detect if the node has joined a new network.
After a node detects that it has joined a new network, it

announces or browses services to support real-time service
discovery. If a node has services, it announces the services in
the area. If a node is interested in some services, it browses
for the services. Furthermore, network resources, such as IP
addresses and local names, are announced in order to avoid
possible conflicts in the new network area. In our algorithm,
a mobile node announces or browses services in two cases:
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Fig. 4. Accelerating service discovery architecture

when it starts Zeroconf and when it detects that it has joined
a new network area. Therefore, our new algorithm minimizes
overhead and new services can be detected by other devices
in real-time.
Fig. 4 presents the architecture of our service discovery

system. Beacon frames in the data link layer can be used
to detect new devices, and monitoring the BSSID value at
the application layer allows mobile devices to detect network
topology changes and notify the changes to the service discov-
ery system for announcing or browsing services and resolving
any possible conflict of IP addresses and host names in the
new network area.

V. IMPLEMENTATION AND PERFORMANCE
In Linux, we can read the BSSID value of a wireless

network interface using the standard wireless extensions for
Linux and the Wireless LAN API for Windows. In Linux, we
using the ioctl() function with the SIOCGIWAP option
which enables us to get the interface’s BSSID value. On
Windows, we can use the WlanGetNetworkBssList()
function.
We used three Linux laptop computers to test our service

discovery system. Our test modeled a situation where a laptop
computer A joins a local ad-hoc network which already con-
tains two laptop computers B and C. Computer A announces
a service and the other two computers browse for the service.
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The result of our testing shows that whenever computer A
joins the local ad-hoc network, the other two computers can
properly discover the service that computer A has.
We also measured the service discovery delay. The delay

represents the period between the moment when a node joins
a network and the moment when that new node’s service
is discovered. We compared the result with an analysis of
the delay of Zeroconf with periodic service announcing and
browsing. In Zeroconf we assume that all service announcing
and browsing interval follows an exponential distribution with
rate α. D is the delay. tA, tB, and tC is the next announcing
or browsing time of computer A, B and C.

Pr(D > t) = Pr(min(tA, tB, tC) > t)

= Pr(tA > t)Pr(tB > t)Pr(tC > t)

= e−3αt.

Fig. 5 shows that the delay versus the average service
announcing and browsing interval. As we can see in Fig. 5, the
delay of Zeroconf is increased as the mean service announcing
and browsing interval is increased. However, the delay of
our algorithm is not affected by the average service interval.
It means that services do not need to be periodically and
frequently announced or browsed in our system. Furthermore,
the delay in our system is negligible. It is because we use an
algorithm that can detect network topology changes.

VI. RELATED WORK
There are many papers about service discovery protocols in

mobile ad-hoc networks, but almost all of them are concerned
about scalability, building service discovery support in the
network layer, and routing problems [10][11][12]. In contrast,
our objective is to determine how to discover new services in
real-time while minimizing overhead.
BEAD [13] also uses beacon frames to get information

about its neighbor nodes. However, it uses the information for

routing tables. Thus, BEAD is not related to service discovery
supported by Zeroconf. BEAD does not properly implement
reading beacon frames at the application layer. In the model,
each node can only communicate with other nodes through a
forwarding node. This differs significantly from our system.

VII. CONCLUSION
Zeroconf allows a local ad-hoc network to work on IP

networking without central servers. However, it has some
potential problems in mobile ad-hoc networks. Zeroconf does
not support detecting network topology changes. Because
of the frequent changes of topology, services need to be
announced or browsed frequently to be properly discovered.
However, it causes network traffic overhead. We have proposed
a new algorithm to accelerate service discovery, especially
in a highly mobile and low density network environment. It
allows mobile users to detect network topology changes and
new services in real-time while minimizing network overhead.
Since in the service discovery systems, services are announced
and browsed only if Zeroconf is initially started or there are
network topology changes, it can reduce network overhead.
Since it supports detecting network topology changes, new
services can be discovered in real-time.
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