
7DS - Node Cooperation and Information Exchange
in Mostly Disconnected Networks

Suman Srinivasan, Arezu Moghadam, Se Gi Hong and Henning Schulzrinne
Columbia University, New York, NY

{sumans,arezu,segihong,hgs}@cs.columbia.edu

Abstract— When the node density in a network decreases
below the level necessary to sustain ad-hoc and mesh networks,
communication can succeed only by leveraging node mobility
and transitioning to message-based communications. In the 7DS
(Seven Degrees of Separation) project, we have been investigating
how to emulate two core Internet services, namely web access
for information retrieval and email for delivering messages from
mobile nodes to the Internet. We have implemented and evaluated
a 7DS prototype system that leverages search, feedback and
propagation limits to build a scalable system that can deliver
data to and from mobile nodes.

7DS makes data exchange in disconnected networks possible
by providing an application-level set of protocol services that will
enable exchange of information between peer devices. It enables
dynamic information exchange by using a proxy server, a multi-
cast query system, a search engine, and a transport entity. With
these entities, 7DS can perform efficient and transparent data
exchange among peers in the absence of a network connection.
Data exchange with the larger Internet occurs when peers enter
or exit the peer network.

I. INTRODUCTION

Wireless networks are widespread today. But despite the
ubiquity of these networks at businesses and homes, users who
need them the most, people who are often on the move, often
lack cheap and easy access to the Internet.

7DS [1] is a unique system that allows wireless users to
exchange data in a local disconnected network. This technique
allows for successful exchange of relevant information based
on two realistic assumptions - (1) that devices move in and
out of the network, eventually connecting to the Internet and
sending out information and bringing in new information and
(2) there is a high probability that the information that is being
searched for exists on a device in the near vicinity. (The second
assumption is based on the fact that there are globally popular
data items that most users would be interested in.)

7DS uses a proxy server that facilitates exchange of re-
quested information among peers in the absence of a connec-
tion to the Internet. The proxy server uses the search engine
and the multicast query engine to search the shared files on
the device to see if there is a match. The system would
thus transparently allow the user to exchange information by
querying other nodes and searching their shared folders.

7DS also enables e-mail transport by implementing a Mail
Transport Agent (MTA) that receives the e-mail and broadcasts
it to the peers. When the peers reach the Internet, they forward
the e-mail to an SMTP server that delivers the e-mail to the
destination.

The 7DS system is described in more detail in the rest
of the paper, which is organized as follows. In Section II,
we introduce the problem of disconnected networks. Section
III describes the approach to this problem and how 7DS is
implemented. Section IV details the architecture of the 7DS
system. Section V and VI describe the transport engine and
community extensions to 7DS. In Section VII, we describe
how the 7DS system was implemented and ported to embedded
devices running Linux. We evaluate the performance of the
system in Section VIII, and present related work in Section
IX. Section X summarizes our paper and provides our ideas
for future work on 7DS.

II. PROBLEM

To facilitate information flow in a disconnected network de-
scribed earlier, devices need to run a platform that enables data
exchange within this disconnected network. In order to enable
data exchange among peers in a disconnected network, a peer-
to-peer (P2P) data sharing system is needed. Current P2P file-
sharing protocols such as Gnutella [2] and BitTorrent [3] are
built to run on connected networks with high-bandwidth. They
are too heavy for mobile ad-hoc networks that are constrained
by bandwidth and connectivity issues.

The 7DS system should be capable of setting up a P2P
network that uses very little bandwidth and is also very
robust. It should be able to work seamlessly in a highly
mobile scenario where users are moving in and out of the
ad-hoc network. It also has to be as interoperable, platform-
independent and use resources sparingly to enable it to run
on a variety of devices, from embedded systems to laptop
computers.

III. APPROACH

The 7DS platform that we have implemented uses a
very lightweight protocol involving simple XML messages
for exchanging queries and responses with peers. It works
seamlessly and transparently: in the absence of an Internet
connection, the 7DS platform automatically queries its peers,
retrieves the requests and presents the user with the data he has
requested. Finally, the 7DS discovery service handles service
discovery as well as discovery of neighboring nodes very
efficiently, enabling the system to work robustly in dynamic
scenarios.

The 7DS platform was designed as an application-layer
solution running as daemons. All the components of the 7DS



Web Browser

Query Scheduler 
Broadcast

Query Receiver

Report Receiver

Cache 
Manager

Database 

Queries 
and results

Cached
files

Add Query 
CGI

List Queries 
and Results

CGI

Search 
Engine

CGI

Query
(Multicast)

Query

Result

Result
Received

User Interface

Internal System

Mini HTTP server

Proxy server Mail Transport Agent

E-mail Client

E-mail

Fig. 1. The overall structure of the 7DS system, showing the search, multicast and transport engines

system can be fully utilized by popular existing software by
simply changing a few settings, such as the proxy server
setting on the browser for HTTP traffic, or the SMTP mail
server on the e-mail client for e-mail traffic. Further, the 7DS
components may, if required, be implemented as transparent
proxies so that no reconfiguration of the client software will
be needed at all.

IV. ARCHITECTURE OF THE 7DS SYSTEM

The 7DS system consists of application-level services and
CGI executables. The components of the 7DS system consist
of a proxy server, web server, search engine, multicast engine
and a transport engine.

The proxy server provides the intelligence to the 7DS
system, routing requests to the Internet or peers depending on
whether connectivity is present or not. The web server pro-
vides the user interface and also allows files to be exchanged
using the HTTP protocol. The search engine enables local
searches, while the multicast engine enables searches across
peers.

These binaries were developed at Columbia University’s
Internet Real-Time Lab and tested on several platforms. The
components are described in this section. The details of the
implementation and experiments are discussed in Section V.

A. Zero Configuration Networking setup

The discovery protocol of the 7DS system is mainly based
on the Zero Configuration Networking specification (Zero-

Conf) [4]. ZeroConf enables devices to obtain IP addresses
for network connectivity without a central DHCP server. It
uses multicast DNS (mDNS) for name resolution, and either
DNS Service Discovery (DNS-SD), Simple Service Discovery
Protocol (SSDP) or Service Location Protocol (SLP) for
service discovery.

In our implementation, IP addresses are allocated through
a discovery protocol with a cross-platform implementation of
Zeroconf called Howl [5]. (We will be using Apple’s Bonjour
[6] in future versions.) The 7DS discovery program uses Howl
to publish a service description using ZeroConf publishing
services to all the clients that are listening for the publish
message. The program also acts as a ZeroConf subscriber
so that it can receive messages that are being published. As
services are removed and added, the discovered services are
stored in memory. This enables the system to find services
and their locations without a discovery server such as DNS
Service Discovery.

B. Proxy Server

The proxy server listens to incoming HTTP requests. Based
on the type of request and whether the device is connected
to the Internet or not, the proxy server decides to serve the
request from the cache, the Internet or through querying other
7DS system nodes via the 7DS multicast engine. The proxy
server serves as the interface between the user, the Internet
and other 7DS peers.



Listen for
requests

Parse the 
HTTP request

Website/
Query

Query
has

keyword

Is website 
local?

Ask search 
engine

Return query
page to client

Act as Proxy/
Cache

Web Server

Hash table 
Lookup of URI

Is object in
cache?

Is Internet
connectivity

present?

Retrieve object 
from website using 

libcurl

Retrieve 
object from 

cache

Internet 
connectivity

Make a 
multicast

query

Google 
search

Provide URL 
to client

YES NO

NOT

FOUND
FOUND

YES

NO

YES

NO

YES

NO

WEBSITEQUERY

Fig. 2. The algorithm of the 7DS proxy server for handling HTTP requests

The proxy server, based on the incoming query, retrieves the
data object most relevant to the user’s request from the local
cache or the Internet, in that order. The proxy server uses the
libcurl [7] library in order to retrieve files over the network.

The algorithm used by the 7DS server to decide how to serve
the client’s request is outlined in Fig. 2. A separate service
thread is created to handle each client.

C. Local Web Server

The web server on the 7DS system serves two functions.
First, it runs the web-based user interface to the 7DS system.
Secondly, it works together with the proxy server to display
local cached results in the absence of Internet connectivity.

The web server should be capable of running on embedded
devices. One such small open-source web server is thttpd [8].
The thttpd binary is only 49 KB in size, making it suitable for
embedded devices. Another web server that is slightly larger in
size but has more features is called lighttpd [9]. In addition,
any web server that supports CGI and PHP can be used in
conjunction with the 7DS system.

The 7DS system uses a folder where shared files are placed.
This directory can be searched and indexed by the 7DS system
components.

Fig. 3. The 7DS search page shows results for a keyword search. The results
correspond to matching files in the local cache.

D. Search Engine

The working of the search engine and the multicast engine
are shown in Fig. 1.

The search engine is built using the Swish-e library [10] that
indexes HTML and XML files for keyword searches. Other file
formats, such as Microsoft Word, Adobe PDF documents, and
popular image formats such as JPEG, PNG and GIF, can also
be indexed through suitable plugins. The Swish-e plugin that
indexes the images by filename (JPG, PNG and GIF) was built
at the Internet Real-Time Lab.

The search engine is a CGI binary that runs on the local
web server. It provides the user the ability to find files corre-
sponding to the requested keyword that exist in the device’s
internal database/cache.

A screenshot of the 7DS search engine in operation is shown
in Fig. 3.

E. Cache Manager

The cache manager is a daemon that runs in the background
at frequent intervals. The default interval is 20 seconds, but
this can be modified through the configuration files. The cache
manager checks if there have been any updates to the cache
where the shared files reside and updates the indexes used to
search the cache if necessary. If there have been no updates to
files in that directory, then it just goes to sleep without taking
any action.

F. Multicast Query Engine

The multicast query engine is used to exchange information
among peers in the network. The user first enters a query
through the 7DS web-based user interface. This query is added
to the device’s internal database. The user is then presented
with a dynamic page that lists the results corresponding to the
user’s query. This dynamic page, which is generated by a CGI



binary, refreshes every 10 seconds and provides the user with
an updated result list.

For the multicast system to work seamlessly, the following
components are needed.

The queries, results and corresponding peers are stored
in a SQLite query database, which is a small-footprint,
open-source database engine [11]. Unlike the larger and more
popular database engines, SQLite does not require a daemon
to handle SQL requests and is hence very suitable for our
project.

The query scheduler broadcast engine broadcasts the
query list in an XML-encoded string to the network. It reads
the list of queries, encodes them in an XML-formatted string
and broadcasts the string on a multicast packet. It sleeps for
a small interval (20 seconds by default) and then resumes and
broadcasts again.

The query receiver listens for incoming packets. Upon
receiving a query list, it runs a local search on the device
using the search engine. If related information is present, it
encodes it in a RSS-based XML format [12] and sends the
XML as a response in UDP packets to the requesting peer.

The report receiver listens on a UDP port for packets
sent by the query receiver. Upon receiving the XML packet
containing the response, it decodes and parses the XML. It
adds the information about the queries, corresponding results
and peers to the database table while avoiding duplication.

In addition to the daemon components that are running on
the device, several CGI programs invoked by the web server
provide the user interface to allow the user to add queries and
to view the results. The CGI query page allows a user to add
a query to the database. The CGI results page lists the queries
that were made and also shows the results corresponding to
each query. The results page automatically refreshes at regular
intervals to return the latest results to the user.

V. TRANSPORT ENGINE

In addition to functioning as a query/response system, 7DS
is also designed to perform data gathering and data delivery.
The core communication protocol for this part is SMTP [13].

The SMTP server listens to incoming messages and dumps
those which should be propagated through the network to the
local Message Transfer Agent (MTA). The MTA unit later
relays them to its neighboring MTAs. The SMTP server also
takes care of managing and storing all the received e-mails in
each 7DS mobile node.

The SMTP server receives the emails from the clients and
creates a SHA1 hash of the email and recipient information.
When the 7DS node meets another node, its MTA goes through
the hash-table and the email directory, reads all the stored
emails and sends them to the peer’s MTA. When the node
is connected to the Internet, the Transport Engine sends the
e-mails to the intended recipient. Because of problems with
e-mail duplication, we will explore the possibility of filtering
the e-mails through a single server in future versions.

The library used to implement SMTP functionality is
libESMTP [14].

VI. COMMUNITY EXTENSIONS

We are currently working on extensions to the basic 7DS
system to add user community functionality. While the ser-
vices detailed above enable a user to share popular information
that originates from centralized web servers, the community
extensions will allow users to create their own objects such as
events, calendars, maps and recipes and share them with other
users..

The community extensions provide the user with a web-
based interface through which the user can enter information
for an event or another type of object. The data is stored in
an XML file whose schema corresponds to a RELAX NG
schema [15] for that object. Users can also define their own
object types using another web-based interface that provides
them with an easy-to-use interface to generate new RELAX
NG schemas without having to understand the format.

The community extensions are currently under development.

VII. IMPLEMENTATION

The first version of the 7DS system written in C has been
completed and tested on several platforms. A running 7DS
system can be downloaded from the 7DS project web page
[16]. 7DS has been compiled and tested on regular desktop
versions of Linux, a small-footprint Linux running on an
embedded platform called WRAP [17], as well as Windows
and Mac OS X.

A. Experimental Setup

We ran the 7DS code on several computers in order to
test the different parts of the system and see whether they
performed as expected in providing Internet services in a
disconnected network. Files from a few test websites were
placed in 7DS caches of the different computers. Searches
were performed to check whether the searches were successful
and if files were found and transferred successfully.

The computers and devices that ran the 7DS code were all
set up and tested in two wired networks (Computer Science
department and Electrical Engineering department), one wire-
less network (Columbia University’s Engineering School) and
one ad-hoc network (in Columbia’s COMET Lab). Our pilot
test ran on Red Hat Linux, Windows, Mac OS X as well as
an embedded system running a small-footprint Linux called
LEAF.

B. Porting 7DS to WRAP

This section has details about how 7DS was packaged to
run on PC Engines’ WRAP (Wireless Router Application
Platform). The WRAP platform presented several challenges.

The WRAP system is a board that is approximately the size
of an adult’s palm. The processor is a National Semiconductor
Geode x86. It also has a network interface card and a wireless
card. Our WRAP board boots off a 32 MB Compact Flash
(CF) card attached to the board’s card reader.

We installed a popular embedded version of Linux called
Linux Embedded Application Firewall (LEAF) [18] on the CF
card and configured it to boot from the CF card on the WRAP



Fig. 4. The inside of the WRAP platform. The hand and the pen in the
picture show how small the WRAP board is.

Fig. 5. 7DS running on the WRAP platform. The screenshot shows a
Windows HyperTerminal terminal interface with the WRAP board through a
serial port connection. The WRAP board runs the query scheduler broadcast
which broadcasts packets with the queries.

board. LEAF is a stripped down version of Linux that boots
off most IDE, memory or other devices with a small-footprint
kernel. Packages are added via LRP files which contain the
binaries and metadata for running them.

The 7DS system was repackaged for LEAF by packaging
the binaries in the LRP format. Also, because of the absence
of libraries necessary for running 7DS on the LEAF platform,
we also repackaged glibc 2.3, libcurl, swish-e, Howl and other
Linux libraries in the LRP format.

C. 7DS on Linux, Mac OS and Windows

7DS was initially built on the Linux platform, and now
exists as a GNU-style source distribution that can be built
with configure/make commands. We are currently porting the
7DS system to run on the Mac OS X and Windows platforms
as well.

7DS has now been compiled and tested on the Mac OS
X 10.4 platform as well. In addition to the development
utilities that come with Mac OS X, a packaging system called

Fig. 6. The cache manager component running on a Mac OS X system

DarwinPorts [19] needs to be installed. DarwinPorts provides
an open source packagement management system for the Mac
OS platform. A screenshot of 7DS components running under
Mac OS X is shown in Fig. 6. 7DS has also been ported to
the Windows platform using the Cygwin [20] shell and GNU
utilities that come with Cygwin. We are currently working on
packaging the software binaries for easy installation on the
Mac OS and Windows platforms.

D. Porting 7DS to Windows Mobile

While the original 7DS code was implemented in Linux,
7DS clearly benefits from having a Windows Mobile version
as well. This would be a first step towards porting 7DS to
a PDA or Smartphone platform, since the major Smartphone
platforms almost exclusively support Windows Mobile as a
development and runtime environment. A version of 7DS for
Windows Mobile is currently under development.

VIII. PERFORMANCE EVALUATION

Yuen and Schulzrinne [21] have carried out an analytical
study of the feasibility and performance of the 7DS system
in disconnected networks. In particular, they have compared
time-based and hop-based Time to Live (TTL) schemes.
Some of their results are summarized below in the subsection
analyzing performance evaluation of the 7DS e-mail system.

An important aspect of performance improvement measure-
ments depends on the presence and density of wireless Access
Points (AP). 7DS itself will benefit nodes in disconnected net-
works, allowing them to retrieve or send information through
peers to the Internet, but absolute performance improvements
in some applications - like e-mail sending - will depend on
the AP density. If performance measurement is done in a state
like North Dakota, where the population density - and hence
wireless AP density - is low, the delay in e-mails reaching the
server is much larger. However, in a densely populated area
like Manhattan, 7DS will be of more use and help in reducing
delays dramatically. A study performed in February 2002 [22]



shows that there are over 13,000 wireless APs deployed in
most areas of Manhattan.

A. E-Mail Performance

We will look at e-mail performance in detail. The most
critical part of the e-mail delivery process is the amount of
time the e-mail spends in the 7DS network itself. Once the
e-mail reaches the Internet, delays are extremely minimal (in
the order of seconds). Hence, we will attempt to quantify the
performance boost due to 7DS in terms of improvement in
delay while the node is in the 7DS network.

Yuen and Schulzrinne [21] find that message delivery in
most of their target scenarios is of the order of 100 seconds,
which is quite reasonable. They also find a e-mail queue
storage size of 50 messages when the wireless AP is seventeen
minutes away, 65 messages when the AP is thirty-four minutes
away and 127 messages when the AP is eighty-three minutes
away. Given the moderate size of e-mail messages, we believe
that the storage-delay tradeoff is quite worthwhile.

Without 7DS, each node would have had to wait to get to the
AP itself, and the delay would have been five to ten times as
large. Even though more e-mails are stored on behalf of peers,
the storage costs are a small price to pay for the reduction in
delay.

B. Webpage Sharing

Unlike e-mail, sharing of webpages or websites is much
more dependent on the data present in the local network.
Hence, 7DS will highly improve performance when websites
are requested in a disconnected network. Studies have shown
that distribution of webpages in terms of popularity follows
Zipf’s law [23] [24]. Since the most popular pages will be
requested by most of the nodes in the network, several of the
nodes would have an updated version of the requested pages
in their cache and could return them to the node that requests
the webpage. Even though the page is slightly outdated, the
retrieval of this information is still more useful than having to
wait to get Internet connectivity.

IX. RELATED WORK

It should be noted that several of the projects presented
here, while similar in design to 7DS, are targeted at solving
problems with mobile ad-hoc networks. While 7DS can be
applied in a mobile ad-hoc network, it is meant to run on all
disconnected networks where peers can interact.

In terms of file sharing, Gnutella [2] and BitTorrent [3]
are the first two applications that come to mind. However,
these protocols are designed to work with always-connected
clients. Further, the base protocols for peer-to-peer file sharing
applications are very inefficient and use a lot of packets to
communicate and exchange files. These involve too much
overhead for a mobile network.

JXTA [25] is a library that enables development of XML-
based P2P protocols to allow peers in a network to interact
with each other. However, just like the Gnutella and BitTorrent

networks, JXTA is suitable for devices that are often connected
to the Internet.

Hayes and Wilson [26] have built a platform based on
Gnutella for sharing files on a peer-to-peer mobile ad-hoc
network. However, they use the Gnutella protocol which
includes routing capabilities that are not needed in the 7DS
system. The 7DS protocol is much lighter and requires very
little data to be exchanged. Further, by virtue of being an
application level service, it is abstracted from the underlying
network. Hence, in contrast to Hayes’ work that runs only on
Bluetooth, 7DS is capable of running on any network, be it
Bluetooth, Ethernet, Wi-Fi or other networks.

Klemm, Lindemann and Waldhorst [27] have built a P2P
file-sharing system called ORION (Optimized Routing Inde-
pendent Overlay Network) for mobile ad-hoc networks. It
uses an overlay network that combines application level query
processing with network layer route discovery for file sharing.
7DS’ multicast system works similarly, but without requiring
a routing system. Further, 7DS enables a whole set of network
applications, not just file sharing.

iClouds [28] is another P2P application that enables infor-
mation sharing in mobile environments. iClouds is built on the
J2ME platform. iClouds uses a UDP ping/pong mechanism to
discover nearby services. In contrast, 7DS uses ZeroConf for
service discovery. The iClouds’ ”virtual notice board” concept
using information exchange of iHave and iWant lists is similar
to 7DS’ forthcoming community extensions, even though they
are implemented differently. The 7DS community extensions
allow a user to define his own class and object to share with
the community.

Proem [29] is a platform similar to the 7DS system. Like
7DS, it is meant for P2P sharing on disconnected mobile ad-
hoc networks. Proem is a protocol stack that allows other
developers to build on top of it, but is not an application itself
that can be deployed like 7DS. Again, in contrast with 7DS,
Proem is also built on Java.

Earlier versions of the 7DS system were developed several
years ago [1] [30], but they were written in Java. Our current
implementation was built from ground-up in C, and it is
hence smaller and faster than the previous version. Further,
our implementation is small enough to be run on embedded
systems with limited computing power.

X. FUTURE WORK

As future work, we would like to complete work on the
7DS community extensions and port 7DS to Windows and
Windows Mobile platforms. We would also like to make the
system more modular and open, so users and developers will
be able to develop applications or tools for disconnected IP
networks that run on top of the 7DS system.

XI. CONCLUSION

The 7DS system developed so far appears to fulfill its
role in serving as a platform for exchanging information in
a disconnected network. The components we have built so



far enable webpages and e-mails to be exchanged within the
disconnected network easily.

In the absence of ubiquitous connectivity, the 7DS system
presents a good solution for implementing transparent data
exchange in a disconnected network without the presence of
the Internet. As devices join and leave the network, they bring
in new information or carry out internal information that needs
to be sent to the outside network.

Setting up 7DS on any device or computer is fairly easy.
Once 7DS-enabled, devices can automatically exchange infor-
mation to overcome the lack of Internet connectivity.

XII. ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion (NSF) under Grant 04-12025.

REFERENCES

[1] M. Papadopouli and H. Schulzrinne, “Design and implementation of a
peer-to-peer data dissemination and prefetching tool for mobile users,”
in First NY Metro Area Networking Workshop, IBM TJ Watson Research
Center, Hawthorne, New York, March 2001.

[2] “Gnutella.” [Online]. Available: http://www.the-gdf.org/
[3] “Bittorrent protocol.” [Online]. Available:

http://wiki.theory.org/BitTorrentSpecification
[4] Zeroconf working group. [Online]. Available: http://www.zeroconf.org/
[5] “Porchdog software’s howl.” [Online]. Available:

http://www.porchdogsoft.com/products/howl/
[6] “Apple computer’s bonjour.” [Online]. Available:

http://developer.apple.com/networking/bonjour/
[7] “libcurl.” [Online]. Available: http://curl.haxx.se/
[8] “thttpd, a small-footprint web server.” [Online]. Available:

http://www.acme.com/software/thttpd/
[9] “lighttpd, a small-footprint web server.” [Online]. Available:

http://www.lighttpd.net/
[10] “Swish-e search and indexing library.” [Online]. Available:

http://www.swish-e.org/
[11] “Sqlite database.” [Online]. Available: http://www.sqlite.org/
[12] “The rss 2.0 specification.” [Online]. Available:

http://blogs.law.harvard.edu/tech/rss
[13] “Rfc 2821: Simple mail transfer protocol.” [Online]. Available:

http://www.ietf.org/rfc/rfc2821.txt
[14] “libesmtp.” [Online]. Available:

http://www.stafford.uklinux.net/libesmtp
[15] “Relax ng.” [Online]. Available: http://www.relaxng.org/
[16] “7ds project home page.” [Online]. Available:

http://www.cs.columbia.edu/IRT/
[17] “Wrap board.” [Online]. Available: http://www.pcengines.ch/wrap.htm
[18] “Linux embedded application firewall (leaf).” [Online]. Available:

http://www.leaf-project.org/
[19] “Darwinports.” [Online]. Available: http://www.darwinports.org/
[20] “Cygwin.” [Online]. Available: http://www.cygwin.com/
[21] W. Yuen and H. Schulzrinne, “Performance evaluation of time-based

and hop-based TTL schemes in partially connected ad hoc networks,”
in Proc. IEEE ICC ’06, June 2006.

[22] “Public internet project - wireless ap density in manhattan.” [Online].
Available: http://publicinternetproject.org/research/research details.html

[23] P. Jelenkovic and A. Radovanovic, “Asymptotic insensitivity of
least-recently-used caching to statistical dependency,” 2003. [Online].
Available: citeseer.ist.psu.edu/jelenkovic03asymptotic.html

[24] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira,
“Characterizing reference locality in the WWW,” in Proceedings
of the IEEE Conference on Parallel and Distributed Information
Systems (PDIS), Miami Beach, FL, 1996. [Online]. Available:
citeseer.ist.psu.edu/almeida96characterizing.html

[25] “Project jxta.” [Online]. Available: http://jxta.org/
[26] A. Hayes and D. Wilson, “Peer-to-peer information sharing in a mobile

ad hoc environment,” in Proceedings of the Sixth IEEE Workshop on
Mobile Computing Systems and Applications, 2004.

[27] C. L. Alexander Klemm and O. P. Waldhorst, “A special-purpose peer-
to-peer file sharing system for mobile ad hoc networks,” in Proc.
IEEE Semiannual Vehicular Technology Conference (VTC2003-Fall).
Orlando, FL: IEEE, October 2003.

[28] A. Heinemann, J. Kangasharju, F. Lyardet, and M. Mühlhäuser, “iClouds
– Peer-to-Peer Information Sharing in Mobile Environments,” in Euro-
Par 2003. Parallel Processing, 9th International Euro-Par Conference,
ser. Lecture Notes in Computer Science, H. Kosch, L. Böszörményi, and
H. Hellwagner, Eds., vol. 2790. Klagenfurt, Austria: Springer, 2003,
pp. 1038–1045.

[29] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, and
Z. Segall, “When peer-to-peer comes face-to-face: Collaborative peer-to-
peer computing in mobile ad hoc networks,” in P2P ’01: Proceedings of
the First International Conference on Peer-to-Peer Computing (P2P’01).
Washington, DC, USA: IEEE Computer Society, 2001, p. 75.

[30] M. Papadopouli and H. Schulzrinne, “Seven degrees of separation
in mobile ad hoc networks,” in IEEE GLOBECOM, San Fransisco,
November 2000.


