The problem

We want to describe large systems using a variety of languages.

Example: Digital answering machine

Two camps

- Grand Unified Language
 Translate everything into a single language:

- Hierarchical Heterogeneity (used here)
 Leave parts of the system abstract:
My proposal

Expected contributions:

- A mathematical framework for heterogeneously specifying an important class of systems (reactive) based on an existing communication scheme (synchronous semantics).
- A set of execution schemes (schedulers) for these specifications.
- An efficient implementation in an existing multi-language environment (Ptolemy).

Hypothesis: Synchronous semantics can be made heterogeneous and used effectively to describe reactive systems.

Outline

- Introduction and Motivation
- Scope: Reactive Systems and Synchronous Semantics
- My Specification Scheme and its Mathematical Framework
- Execution Techniques
- Work to Date and Future Work

Scope: Reactive systems

[Harel, Pnueli 85]

- Maintain an ongoing dialog with their environment—listen, don’t terminate
- When things happen as important as what happens
- Discrete-valued, time-varying
- Examples:
 - Systems with user interfaces
 * Digital watches
 * CD players
 - Real-time controllers
 * Anti-lock braking systems
 * Industrial process controllers

Many currently designed with ad-hoc techniques—difficult to do quickly and reliably

Synchronous semantics

[Berry, Halbwachs, Benveniste, et al.]

Basic idea: Instantaneous Computation

Induces a discrete model of time:

- Rigorous: Synthesis, verification made easier. Fewer states than asynchronous.
- Decomposable: Decomposes without affecting behavior, expressiveness.
- Predictable: Deterministic concurrency.
- Buildable: Make system faster than environment. Difficult to build systems with exact delays.
Cycles and zero delay

A contradictory specification!
A fundamental problem with zero delay

<table>
<thead>
<tr>
<th>Existing Schemes</th>
<th>Proposed Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>check at compile time</td>
<td>check at run time</td>
</tr>
<tr>
<td>slow compilation</td>
<td>fast compilation</td>
</tr>
<tr>
<td>no heterogeneity</td>
<td>allows heterogeneity</td>
</tr>
</tbody>
</table>

Argument: Checking should not be necessary for compilation—it is a verification problem.

Outline

- Introduction and Motivation
- Scope: Reactive Systems and Synchronous Semantics
- My Specification Scheme and its Mathematical Framework
- Execution Techniques
- Work to Date and Future Work

My systems:
Network of communicating modules

- Synchronous: zero-time computation, instants
- Cycles permitted
- Exactly one module drives each “wire”
- Each module computes a function in each instant
- Module functions may change between instants

Wire values:
Finite complete partial orders

[Scott et al.]

A finite complete partial order (CPO): \((S, \sqsubseteq, \bot)\)

- \(S\): Finite set of values
- \(\sqsubseteq\): binary relation (“approximates”) on \(S\)
 - Transitive: \(x \sqsubseteq y\) and \(y \sqsubseteq z\) implies \(x \sqsubseteq z\)
 - Antisymmetric: \(x \sqsubseteq y\) and \(y \sqsubseteq x\) implies \(x = y\)
 - Reflexive: \(x \sqsubseteq x\)
- \(\bot \in S\): \(\bot \sqsubseteq x\) for all \(x \in S\)

\[
\begin{array}{c}
1 \\
\bot
\end{array} \begin{array}{c}
0 \\
\bot
\end{array} \\
\begin{array}{c}
11 \\
01 \quad 10 \quad 00
\end{array}
\]

Pointwise extension
Modules:
Monotonic functions

A monotonic function \(f : S \rightarrow S \) has

\[x \sqsubseteq y \implies f(x) \sqsubseteq f(y) \]

Intuition: Well-behaved functions:
more in \(\implies \) more out,
“doesn’t change its mind”

If \(f \) and \(g \) monotonic, so is \(f \circ g \).

Extending module functions

The input and output to each module is the vector of all wires in the system.

However, a module only examines its inputs, only modifies its outputs.

Behavior in an instant:
The least fixed point

Why a fixed point?

\[f(x_t) = x_t \]

System function
Wire values at time \(t \)
\((f = f_0 \circ f_1 \circ \cdots \circ f_n)\)
\((\text{zero delay})\)

Unique least fixed point theorem

[well-known]

Theorem: A monotonic function on a finite complete partial order has a unique least fixed point.

\[
\bot \sqsubseteq f(\bot) \quad \text{(definition of } \bot) \\
\bot \sqsubseteq f(f(\bot)) \quad \text{(} f \text{ is monotonic)} \\
f(f(\bot)) \sqsubseteq f(f(f(\bot)))
\]

Behavior: least fixed point of a monotonic function on a finite CPO
Implications:

- unique
- always defined
- quickly computed
- heterogeneous
 (only care about monotonicity)
Order-invariance theorem

[Murthy, Edwards 95]

Theorem: The least fixed point is the same for all composition orders of these functions.

Proof. (technical) Consequence of “one wire,” “one driver” rule.

Implication: Behavior independent of module evaluation order—optimize for speed, code size, etc.

Interfacing with other languages

Original problem: Using multiple languages

One solution: Build a generic module interface

Outside:
A strict monotonic function

Inside:
Simple “function call” semantics

- Need a complete partial order
 Solution: Build a flat CPO:

- Need a monotonic function
 Solution: Make the foreign function strict:

\[f(\ldots, \bot, \ldots) = \bot \]

Outline

- Introduction and Motivation
- Scope: Reactive Systems and Synchronous Semantics
- My Specification Scheme and its Mathematical Framework
- Execution Techniques
- Work to Date and Future Work

Implementation

Problem: In each instant, find the least fixed point.

Solution: (follows from proof of fixed point theorem)

\[\bot \subseteq f(\bot) \subseteq f(f(\bot)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

For each instant,

1. Start with all wires at \(\bot \)
2. Evaluate all module functions (in some order)
3. If any change their outputs, repeat Step 2

Challenge: Reduce the number of function evaluations.

Order-invariance ensures same result for all orderings.
Other Execution Schemes

Esterel V3 Compiler: Tabular FSM
[Berry et al. 88]
Recall results from a table at run time.

Esterel V4 Compiler: Boolean Network
[Berry, Shiple, Malik et al. 94]
Simulate a boolean network at run time.

Execution Schemes Compared

<table>
<thead>
<tr>
<th>Execution Scheme</th>
<th>Heterogeneous</th>
<th>Compilation Time</th>
<th>Executable Size</th>
<th>Execution Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabular FSM</td>
<td>no</td>
<td>exp.</td>
<td>exp.</td>
<td>const.</td>
</tr>
<tr>
<td>Boolean Network</td>
<td>no</td>
<td>exp.</td>
<td>poly.</td>
<td>poly.</td>
</tr>
<tr>
<td>Convergent Iteration</td>
<td>yes</td>
<td>poly.</td>
<td>poly.</td>
<td>poly.</td>
</tr>
</tbody>
</table>

Scheduling

Possible objectives
- Minimize execution time or code size

Possible approaches
- Fully static scheduling
 Determine evaluation order once at compile-time.
- Fully dynamic scheduling
 Determine evaluation order at run-time.

Possible techniques
- Clustering (e.g., [Buck 93])
- Weak Topological Ordering [Bourdoncle 93]
- Strong Component Decomposition [Buhl et al. 93]
- Minimum feedback arc set (NP-complete)

Outline

- Introduction and Motivation
- Scope: Reactive Systems and Synchronous Semantics
- My Specification Scheme and its Mathematical Framework
- Execution Techniques
- Work to Date and Future Work
Work to date

- **Proof of concept:**
 Wrote a compiler for synchronous language Esterel with simpleminded scheduler

<table>
<thead>
<tr>
<th>lines</th>
<th>297</th>
<th>467</th>
<th>619</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3 Compilation (m:s)</td>
<td>0:52</td>
<td>4:43</td>
<td>15:57</td>
</tr>
<tr>
<td>My Compilation (m:s)</td>
<td>0:02</td>
<td>0:03</td>
<td>0:03</td>
</tr>
<tr>
<td>V3 Executable (K)</td>
<td>870</td>
<td>3700</td>
<td>12200</td>
</tr>
<tr>
<td>My Executable (K)</td>
<td>64</td>
<td>80</td>
<td>96</td>
</tr>
<tr>
<td>V3 Execution Time (s)</td>
<td>2.8</td>
<td>4.8</td>
<td>6.6</td>
</tr>
<tr>
<td>My Execution Time (s)</td>
<td>2.3</td>
<td>2.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- **Foundation for future work:**
 A mathematical framework based on finite complete partial orders and monotonic functions.
 - unique solution always exists
 - can be evaluated different ways

Future work

- Extend and polish the mathematical framework
- Implement this scheme as a domain in Ptolemy
 - Write a simple-minded reference scheduler
 - Create primitive modules
 - Devise foreign module interface(s)
- Work on scheduling schemes
 - Find an exact algorithm for the optimal schedule (probably NP-complete)
 - Devise heuristics for approaching the optimum

Conclusion

- A heterogeneous approach to reactive systems based on synchronous semantics
- Expected contributions:
 1. A mathematical framework for describing reactive systems using synchronous semantics
 2. A set of scheduling algorithms for efficient execution
 3. A practical implementation of these
- Proof-of-concept compiler created
- Mathematical framework created