
Challenges in Synthesizing Fast
Control-Dominated Circuits
Cristian Soviani and Stephen A. Edwards, Columbia University

Question: Can we use the high-level information in
Esterel source to generate efficient control circuits?

Approach: Manually optimize circuits generated
by a syntax-directed translation and understand
what insight was needed.

Answer: Effective optimization required
both local and global information.

Semi-global reachable state information
crucial to get best results.

Grey Code Counter
module Bit:

input CLK;

output B, CY;

loop

await CLK;

abort sustain B when CLK;

emit CY;

abort sustain B when CLK;

await CLK;

emit CY

end loop

end module

g0

D Q

D Q

g1

D Q

D Q

D Q

D Q

h3

h2

h1

h0

Optimization: Re-encode each bit
of the counter using two instead of
four registers.

Locking Button Controller (abcdef)
module ONE_BUTTON:

input BUTTON, LOCK;

output SELECTED_ON, SELECTED_OFF;

output LOCKED_ON, LOCKED_OFF;

inputoutput SELECTED, LOCKED, UNLOCKED;

emit SELECTED_OFF; emit LOCKED_OFF;

loop

trap WAIT_FOR_SELECTION in

trap NOW_SELECTED in % Wait to be selected

loop

abort

await BUTTON do % S1

exit NOW_SELECTED % We were pressed

end await

when LOCKED; % We have been locked out

await UNLOCKED % S2: Wait to be released

end end;

loop % Selected or locked

emit SELECTED_ON; % We were selected

emit SELECTED; % Disable other buttons

abort

await % S3

case BUTTON % User disabled us or

case SELECTED % other button pressed

end await;

emit SELECTED_OFF; % We lost the selection

exit WAIT_FOR_SELECTION

when LOCK;

emit LOCKED_ON; % We are now locked and

emit SELECTED_OFF; % no longer selected.

emit LOCKED; % Lock out others and

await LOCK; % S4: wait for unlock

emit LOCKED_OFF; % Announce it and

emit UNLOCKED % release other buttons.

end end end end

end module

BOOT

A B F

Unlocked

Locked

C D E

BOOT Locked

A B C D E F

Observation: Each machine may be in
one of four states, but together all must
be in first two or second two.

Optimization: Replace local one-of-four
encoding with a global encoding that
uses one register for locked/unlocked
status.

Local Optimizations

trap AckReceived in

await tick;

sustain TCRegOutCkDis

||

await immediate ACK;

exit AckReceived

end trap;
X=1

X=1

X=1

await tick;

sustain X;

Optimization: Merge adjacent equivalent
states. Classical state minimization induced by
natural, but unfortunate coding style.

loop

await ConflictOnSEL;

do

every immediate SEL do

emit RejectSEL

end

watching AcceptSEL

end loop

BOOT

C

C’

A

A’

C

C’

A

A’

BOOT

X=1 X=1

seq d/c : BOOT => C’

C = ConflictOnSEL

A = AcceptSEL

Optimization: Merge initial state with later
states. Legal only because actions in later state
never occur in first cycle.

Turbochannel Bus Controller (tcint)
pause; % to avoid problems at boot time!

loop

await % DMA request or SEL

case immediate [Fo_HF and DMAWrAddrRdy] do

run DMA_WRITE

case immediate [not Fi_HF and DMARdAddrRdy] do

run DMA_READ

case immediate SEL do % SEL : decode opcode

emit TagFlag;

trap ReadSharedEnd, WriteSharedEnd in

present [SEL and WRITE and not ADB24 and

ADB23 and not ADB22] then

run WPOM

else present [SEL and not WRITE and

not ADB24 and ADB23 and not ADB22] then

run RPOM; exit ReadSharedEnd

else present [SEL and WRITE and ADB24] then

run WPAM

else present [SEL and not WRITE and

ADB24] then

run RPAM; exit ReadSharedEnd

else present [SEL and WRITE and not ADB24

and ADB23 and ADB22] then

run WFIFO

else present [SEL and not WRITE and

not ADB24 and ADB23 and ADB22] then

run RFIFO; exit ReadSharedEnd

else present [SEL and not WRITE and not

ADB24 and not ADB23 and not ADB22] then

run RROM; exit ReadSharedEnd

else present [SEL and WRITE and not ADB24

and not ADB23 and ADB22] then

run WLCA

else present [SEL and not WRITE and

not ADB24 and not ADB23 and ADB22] then

run RLCA; exit ReadSharedEnd

else

halt

end end end end end end end end end

handle ReadSharedEnd do

% drive final data word on next cycle

emit pDriveTBC;

pause;

% send RDY and pHostDrives, wait one cycle

emit RDY;

emit pHostDrives;

pause

end trap

end await

end loop

BOOT

IDLE

4ADDR
SEL
WRITE

DMARDxx

DMAWRITExx

2
2

Decoders

selection cycle

Optimization: Merge equivalent states because leaving
them separate requires substantial, slow decoding logic
just before the most critical, complex set of decisions in
the machine.

Redundant signal emission

Main DRIVE

/B

/A

/C

/A

/B

/A/D

/B
/A

/D

/A

B/

A/

C/A/

D/

A/

Optimization: Form product machine because parallel
machines actually operate in lock-step.

Optimization: Remove redundant signal emission
known never to be “heard.”

Experimental Results
example lines synthesis levels look-up latches

of code method of logic tables
graycounter 91 V5 + blifopt 5 66 27

manual 4 51 17

abcdef 142 V5 + blifopt 5 114 25
manual 3 128 8

mem-ctrl 80 V5 + blifopt 3 24 16
CEC + comb 3 52 17
CEC + blifopt 3 27 15
manual 2 31 13
Original VHDL 2 17 11

mem-ctrl2 36 V5 + blifopt 2 17 8
CEC + comb 2 23 9
CEC + blifopt 2 18 8
manual 2 14 3
JEDI + comb 2 14 3

tcint 689 V5 + blifopt 5 93 52
manual 3 118 52

1

