High-level Synthesis from the Synchronous Language Esterel

Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/~sedwards
Three Ideas for Esterel

Controller synthesis from Program Dependence Graph

- Control flow represented concurrently [Ferrante et al. 1987]
- Construction usually $O(n)$ [Cytron et al. 1991]
- Trivial, efficient translation into circuits

High-level State Assignment

- Optimizers need reachable states [Sentovich et al. 1997]
- High-level structure partitions, simplifies state assignment

Don’t-Care Extraction

- Control-flow relationships easy to analyze
- Controllability don’t-cares
An Example

sustain R ← Make R present forever
An Example

weak abort ← Make R present until A is sustain R when immediate A;
An Example

wait I;
weak abort
sustain R
when immediate A;
emit O

Wait for next cycle where I is present
Make signal O present this cycle
An Example

Infinite Loop

await l;
weak abort
sustain R
when immediate A;
emit O

end
An Example

loop
 await I;
 weak abort
 sustain R
 when immediate A;
 emit O
end
end

|| Run Concurrently

loop
 pause; pause;
 present R then
 emit A
end
end
An Example

every S do
 loop
 await I;
 weak abort
 sustain R
 when immediate A;
 emit O
 end
|| loop
 loop
 pause; pause;
 present R then
 emit A
 end
 end
end
An Example

every S do
 loop
 await l;
 weak abort
 sustain R
 when immediate A;
 pause
 end
end

||
loop
 pause, pause;
 present R then
 emit A
end
end

Same-cycle bidirectional communication
An Example

every S do
 loop
 await I;
 weak abort
 sustain R
 when immediate A;
 pause
 end
||
 loop
 pause; pause;
 present R then
 emit A
 end
end

Esterel: [Berry 1992]

Good for hierarchical FSMs
Cycle-based semantics like SystemC
High-level control constructs (exceptions, preemption)
Weak at data manipulation (e.g., no types, pointers)
Hardware Esterel variant proposed to address this
Translation to CCFG

every S do
 loop
 await I;
 weak abort
 sustain R
 when immediate A;
 emit O
 end
end

loop
 pause; pause;
 present R then
 emit A
 end
end
Translation to PDG
Translation to Circuitry
Want more?

See the paper

http://www.cs.columbia.edu/~sedwards