ESUIF: An Open Esterel Compiler
Stephen A. Edwards

Department of Computer Science
Columbia University
www.cs.columbia.edu/"sedwards

Not Another One...

My research agenda is to push Esterel compilation
technology further.

We still don’t have a technique that builds fast code for
large programs.

No decent Esterel compiler available in source form.

Brief History of Esterel Compilers
Automata-based
V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]

Still the best for small programs with few states

Does not scale
Netlist-based
V4, V5 (INRIA/CMA)

Scales very nicely

Produces code that runs hundreds of times slower for
sequential programs

Only executables available (www. est er el . or g)

Brief History of Esterel Compilers
Control-flow-graph based
My work: EC [DAC 2000, TransCAD 2002]
Produces very efficient code for acyclic programs only
Discrete-event based
SAXO-RT [Well et al. 2000]
Produces very efficient code for acyclic programs only
Being improved at Esterel Technologies?
Both proprietary; unlikely to be released.

Neither currently copes with statically cyclic programs.

ESUIF

New, open-source compiler being developed at Columbia
Based on SUIF 2 system from Stanford University
Much more modular: implemented as many little passes

Common database represents program throughout

SUIF 2 Database

Main component of the SUIF 2 system
User-customizable object-oriented database
Written in C++

Not highly efficient, but very flexible

SUIF 2 Database

Database schema written in their own “hoof” format

C++ implementation automatically generated
class MyClass : public SuifObject

{
public:
int get x(O);
concrete MyClass { _ I ()_
i void set x(int the value);
int x; -
MyClass();

void print(...);
static const Lstring
get _class name();

Three Intermediate Representations
AST-like representation from front end

Primitives: abort, emit, present, suspend, etc.

Lower-level “C-like” representation

Primitives: if-then-else, try, resume, parallel, etc.

C code
Primitives: if, goto, expressions

SUIF 2 includes a complete C schema

My New Intermediate Representation

Intermediate Representation
var = expr

1 f (expr) { stnts } else { stnts }
Label :

got o Label

break n

cont i nue

try { stms } catch 2 { stnms } ...
resune { stnts } catch 1 { stnts } ..

parallel { resunes } catch 1 { stnts } -

fork Label 1, Label 2,
joln

Intermediate Representation
var = expr

1 f (expr) { stnts } else { stnts }
Label :

got o Label

Self-explanatory
Signals represented as variables.

Restrictions on where a goto may branch.

Intermediate Representation

break n

cont i nue

try { stmts } catch 2 { stnts }
resune { stnts } catch 1 { stnts }
parallel { resunes } catch 1 { stnts }

Numerically-encoded “exceptions”
Based on Esterel’s completion codes

O=terminate 1=pause 2,3,...=exit

Implementing Exceptions

trap T1 in try {
exit T1 break 2 got o Cat chz;
got o Cat chO;
handleTldo } catch 2 { Cat ch2:
c=1 c =1 c = 1;
end } Cat chO:

t ry becomes a few labels.

br eak becomes a goto.

Resume/Continue

abort resume { goto E
C: switch (s) {
case 0: goto StO;
case 1: goto Stil;

+
pause break 1 E: s = 0; goto Cal; StO:
pause break 1 s = 1; goto Cal; Stil:
goto CaO;
} catch 1 { Cal:
break 1 so = 0; goto Calo; StOo:
when A iIf (1A) continue iIT (TA) goto C;
+ Ca0:

resume becomes a multi-way branch plus some labels.

continue sends control to the multi-way branch.

Resume/Continue

First cycle:

Case 1: goto Stil;
+

goto CaO;
Cal:
so = 0; goto Calo;

StOo: 1T (1A
CaO:

E: s = 0; goto Cal; StO:
s = 1; goto Cg1;>8t1:

Second cycle:

goto E

C: switch (s) {
case 0: goto StO;
case 1: goto Stl;
+

E: s = 0; goto Cal; StO:
s = 1; goto Cal; Stl:

<(—-—?Uto—eagf~

so = 0; goto Calo;

StOo: 1Tt (1A)
Ca0:

Parallel and Exit

trap T1 in try {
trap T2 In try {
paral | el {
resune {
exit T1 break 3 }
| | resune {
exit T2 break 2 }
} catch 1 {

break 1; continue }
handle T2doemitBend } catch 2 { B := 1}
handle T1doemitAend } catch 3 { A:=1 }

Parallel

pause;
pause

pause

paral | el {
resune {
break 1
break 1
}
resune {
break 1

}

} catch 1 {

break 1
conti nue

Parallel Behavior

;;;;nlel { parallel {
resume { resume {
break 1 break 1
break 1 break 1
} } (\
resume { resume {
break 1 break 1
} <
} catch 1 { } catch 1 {
break 1 break 1
continue continue

} }

A Minor Point on Completion Codes

Berry’s encoding reduces the exit code if it is not handled.

try {
break 5

} catch 2 { ... }

generates br eak 4 in Berry’s encoding.

| assign each trap its own completion code; they pass
unchanged.

Simpler semantics vs. the danger of larger codes.

Irrelevant in HW, probably not a problem for SW.

Code Generation Ideas

Static Unrolling

Can always evaluate cyclic programs by computing least
fixed point through iteration:

lfp(F) = F™(L)

Suggests three-valued evaluation is necessary. What
does that mean with control-flow?

Theorem
Suggested by Berry:

If F'is monotonic, has a unique least fixed point that is
maximal (i.e., Ifp(F) C y implies y = Ifp(F)), and is
defined on a finite CPO, then it can be computed using

lfp(F) = F"(z)

where z Is two-valued and n is the height of the domain.

Proof: L C z (trivial), so F(L) C F(x), F?(L) C F?(x),
..., F™(L) E F™(x). However, since F" (L) = lfp(F) Is
maximal, we must have Ifp(F') = F"(x).

Implications of Theorem

Our functions are such that if x is two-valued then F'(x) is
two-valued. This implies the sequence

z, F(z), F2(z),..., F™(x) (1)

IS also two-valued. Therefore, the computation can be
carried out using purely two-valued variables.

Note that (1) is not necessarily increasing.

Implications of Theorem
Approach:

Program must be proven causal using some other
mechanism

Evaluate program through relaxation: start with arbitrary
Initial guess and evaluate to convergence.

Evaluation carried out with two-valued variables

Iteration strategy can be accelerated using Bourdoncle or
my thesis.

Implications of Theorem

Unroll program according to connectivity.

Constant propagate to simplify.

Execute result: two-valued logic only.

Program Dependence Graph

entry
1 f (Cl)
i (C2) <h
34,
@ C3
el se
L: Sb5; 4| s5
S6; t/
el se =0
) \ y
1t () 7
goto L; |
87; exit

entry

Program Dependence Graph

entry

X
@ C3

Program Dependence Graph

Also applicable to software generation

Transform to PDG, then generate code that executes
PDG.

Some PDGs can be synthesized directly; others require
additional predicates when sequentialized [Ferrante et al.,
Steensgaard]

Heuristics needed to keep number of predicates
minimized.

Discrete-Event Approaches
Pioneered by Well et al. [CASES 2000]
Efficient, but scheduler is fixed at compile time.
Does not handle statically cyclic programs.

Techniques such as French et al. [DAC 1995] schedule as
much as possible beforehand, but retain some dynamic
behavior.

Discrete-Event Approaches

Dealing with schizophrenia and causality appear to
require code duplication.

Actually not really: just need to execute some code more
than once.

Discrete-event scheduler ideal: have it invoke certain
subroutines multiple times.

Small loss of efficiency in return for no code size increase.

Conclusions
New ESUIF compiler
Based on SUIF 2 infrastructure
Open-source, under development
Intermediate Representation
Numeric exception codes
Simple translation into assignments and branches
Code Generation ideas
Static unrolling with two-valued evaluation
Program dependence graph approach

Discrete-event Approaches

