Session 3A—System-Level Design and Specification

Heterogeneously-Specified Synchronous Controllers

Stephen Edwards
Edward A. Lee

{sedwards,eal}@eecs.berkeley.edu
http://ptolemy.eecs.berkeley.edu/~{sedwards,eal}

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

March 14th, 1996
Controllers are reactive systems

- Maintain an ongoing dialog with their environment—listen, don’t terminate
- *When* things happen as important as *what* happens
- Discrete-valued, time-varying
- Examples:
 - Systems with user interfaces
 * Digital watches
 * CD players
 - Real-time controllers
 * Anti-lock braking systems
 * Industrial process controllers
Our systems: Networks of concurrently executing modules communicating synchronously

Opaque, zero-delay modules compute functions

Instantaneous, bidirectional communication

Single driver, multiple receiver “wires” (no buffering)

Every module computes once each instant

Nothing happens between instants
Outline

- Defining behavior in an instant:
 A fixed point

- Ensuring determinism:
 Monotonic module functions

- Efficient software implementation:
 Iterating to a fixed point

Most schemes relax one of these requirements.

Which goes first?
Need an order-invariant semantics

Contradictory!
Need to attach meaning to such systems without looking inside modules
Fixed-point semantics are natural for synchronous specifications with cycles

Why a fixed point?

Self-reference:
The essence of a cycle

\[f(x_t) = x_t \]

System function \quad Wire values at time \(t \)

(composition of \quad (zero delay)
module functions)

fixed point \(\iff \) stable state

determinism \(\iff \) unique solution
Outline

- Defining behavior in an instant:
 \textit{A fixed point}

- Ensuring determinism:
 \textit{Monotonic module functions}

- Efficient software implementation:
 \textit{Iterating to a fixed point}
Two restrictions make these systems deterministic

Restriction 1: Partially-Ordered Wire Values
Restriction 2: Monotonic Module Functions

Unique Least Fixed Point Theorem

Always-Defined Deterministic System Behavior
Restriction 1: Partially ordered wire values

Values along an upward path grow more defined.

Formally, \(x \sqsubseteq y \) if \(y \) is at least as defined as \(x \).
Restriction 2: Monotonic module functions

A monotonic function never gives a less defined or incomparable result.

Formally, $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$.

Closed under composition: if $f(x)$ and $g(x)$ are monotonic, then $f(g(x))$ is.

Implication: Composing monotonic functions builds a monotonic network.
The least fixed point theorem ensures determinism

Well-known theorem: A monotonic function on a partial order has a unique least fixed point.

Behavior in an instant: The least fixed point of the (monotonic) system function

Implications:

- unique
- always defined
- quickly computed
- heterogeneous
 (only need monotonicity)
Meeting the conditions for determinism is easy

- Partially-ordered wire values
 Any set \(\{a_1, a_2, \ldots, a_n, \ldots\} \) can easily be “lifted” to give a flat partial order:

- Monotonic module functions
 Ways to ensure monotonicity:
 - Strict functions are monotonic
 - Most functions in “X-valued simulation” are monotonic
 - The composition of monotonic functions is monotonic
Many languages use strict functions, which are monotonic

A strict function:

\[g(\ldots, \perp, \ldots) = (\perp, \ldots, \perp) \]

input wires \hspace{1cm} output wires

Outside:
A strict monotonic function

Inside:
Simple "function call" semantics

Common languages with strict functions:

- C/C++
- Synchronous Dataflow (SDF)

Danger: Cycles of strict functions
deadlock—fixed point is all \(\perp \)—need some non-strict functions.
Outline

- Defining behavior in an instant:
 \emph{A fixed point}

- Ensuring determinism:
 \emph{Monotonic module functions}

- Efficient software implementation:
 \emph{Iterating to a fixed point}
The fixed point theorem suggests a simulation algorithm

\[\bot \subseteq f(\bot) \subseteq f(f(\bot)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

For each instant,

1. Start with all wires at \(\bot \)
2. Evaluate all module functions (in some order)
3. If any change their outputs, repeat Step 2

\[
\begin{align*}
(a, b, c) &= (\bot, \bot, \bot) \\
f_0(\bot, \bot, \bot) &= (0, \bot, \bot) \\
f_1(0, \bot, \bot) &= (0, 1, \bot) \\
f_2(0, 1, \bot) &= (0, 1, 0) \\
f_2(f_1(f_0(0, 1, 0))) &= (0, 1, 0)
\end{align*}
\]
Iterating to a fixed point is efficient and predictable

\[\perp \subseteq f(\perp) \subseteq f(f(\perp)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

A simple bound:

- Height is linear in the number of wires
- Each module evaluated once per step

\[O(W \cdot M) \] module evaluations per instant

Can be scheduled statically: module evaluation order fixed at compile-time.

No wire tests required: just make iterations = height.
Many optimizations are possible

- Evaluate strongly-connected components in a topological order
- Form reactive clusters and bypass idle ones
- Cache the more-expensive-to-compute functions
Summary

- A way to specify synchronous controllers heterogeneously

 Synchronous = Zero Delay
 Heterogeneous = Modules are Opaque

- Behavior defined as a fixed point

 Fixed points natural for describing cycles

- Determinism through monotonic functions on partial orders

 Least fixed point theorem ensures unique behavior always defined

- Iterating to a fixed point efficient and predictable

 Statically schedulable
 O(W · M) worst-case execution time