
Debugging and Tuning
Linux for EDA

Fabio Somenzi

Fabio@Colorado.EDU

University of Colorado at Boulder

Outline
Compiling

gcc
icc/ecc

Debugging
valgrind
purify
ddd

Profiling
gcov, gprof
quantify
vtl
valgrind

Compiling
Compiler options related to

static checks
debugging
optimization

Profiling-driven optimization

Compiling with GCC
gcc -Wall -O3 -g

reports most uses of potentially uninitialized
variables
-O3 (or -O6) necessary to trigger dataflow analysis
can be fooled by

if (cond) x = VALUE;
...
if (cond) y = x;

Uninitialized variables not considered for register
allocation may escape

Achieving -Wall-clean code is not too painful and
highly desirable

Compiling C code with g++ is more painful, but has its
rewards

Compiling with GCC
gcc -mcpu=pentium4 -malign-double

-mcpu=pentium4 optimizes for the Pentium 4, but
produces code that runs on any x86
-march=pentium4 uses Pentium 4-specific
instructions
-malign-double forces alignment of double’s to
double-word boundary

Use either for all files or for none

gcc -mfpmath=sse

Controls the use of SSE instructions for floating point

For complete listing, check gcc’s info page under
Invoking gcc → Submodel Options

Compiling with ICC
ICC is the Intel compiler for IA-32 systems.

http://www.intel.com/software/products/

icc -O3 -g -ansi -w2 -Wall

Aggressive optimization
Retain debugging info
Strict ANSI conformance
Display remarks, warnings, and errors
Enable all warnings

Remarks tend to be a bit overwhelming

Fine grain control over diagnostic: see man page

Compiling with ICC
icc -tpp7

Optimize instruction scheduling for Pentium 4
Also icc -mcpu=pentium4

icc -ipo

Multi-file interprocedural optimizations

icc -axW

Generate both Pentium 4 and generic instructions

icc -xW

Generate code specific for the Pentium 4
Also icc -march=pentium4

icc -align

Analyze and reorder memory layout

GCC: Profiler-Driven Optimization
gcc -fprofile-arcs test.c

Instrumented compilation

./test input

Instrumented execution
Produces .da files
Can be repeated with different inputs

gcc -fbranch-probabilities test.c

Feedback compilation

ICC: Profiler-Driven Optimization
icc -prof_gen test.c

Instrumented compilation

./test input

Instrumented execution
Produces .dyn and .dpi files
Can be repeated with different inputs

icc -prof_use test.c

Feedback compilation

Debugging

Dynamic analysis tools
valgrind, purify

Classical debuggers
gdb, idb and their graphical front-ends, especially. . .
ddd

Valgrind
Tool for debugging and profiling Linux-x86 executables

Valgrind consists of:
core: synthetic CPU
skins: perform analyses

Available skins
memcheck and addcheck: memory debugging
cachegrind: cache profiling
helgrind: races in multithreaded programs

Valgrind: Memory Debugging
Use of uninitialized memory

Reading/writing memory after it has been free’d

Reading/writing off the end of malloc’d blocks

Reading/writing inappropriate areas on the stack

Memory leaks – where pointers to malloc’d blocks are
lost forever

Passing of uninitialized and/or unaddressable memory
to system calls

Mismatched use of malloc/new/new [] vs.
free/delete/delete []

Some misuses of the POSIX pthreads API

Valgrind: Memory Debugging

1: #include <stdlib.h>
2: main()
3: {
4: char *x, *d = "foo";
5:
6: x = malloc(922);
7: x = malloc(123);
8: x = malloc(-9);
9:
10: free(d);
11: free(x);
12: free(x);
13: }

Valgrind: Memory Debugging

valgrind -leak-check=yes -show-reachable=yes mtest

Warning: silly arg (-9) to malloc()

Invalid free() / delete / delete[]
in main (mtest.c:10)

123 bytes in 1 blocks are definitely lost
in main (mtest.c:7)

922 bytes in 1 blocks are definitely lost
in main (mtest.c:6)

Why isn’t the double free(x) reported?

Valgrind: Memory Debugging
Valgrind tracks each byte with nine status bits

one tracks addressibility of that byte
the other eight track the validity of the byte

Valgrind can be used to debug dynamically-linked ELF
x86 executables, without modification, or recompilation

valgrind ls -ls

Valgrind can attach GDB to the running program at the
point(s) where errors are detected

Valgrind works on large applications

Mozilla
OpenOffice

emacs-21.2
Gcc

AbiWord
KDE3

Valgrind
http://developer.kde.org/˜sewardj/

Last stable version 20031012

Only on x86-Linux

Works on many distributions, but not all
Yes: RH 7.2 7.3 8 9
No: RH 7.1

kcachegrind GUI only available under KDE

memcheck slows down execution by 25-50 times

addrcheck is lighter weight, but does not track
read-before-write’s

the -gen-suppressions=yes option tells Valgrind to
print out a suppression for each error that appears

IBM Rational PurifyPlus
http://www.rational.com/

Runtime analysis
Memory corruption detection
Memory leakage detection

Requires instrumentation
purify gcc -g mtest.c

Languages: C, C++

Purify: Bad Function Parameter

Purify: Memory Leaks

A Sample Program
int main(int argc, char *argv[])
{
int *a, i;

a = (int *)malloc((argc - 1) * sizeof(int));
for (i = 0; i < argc - 1; i++)
a[i] = atoi(argv[i + 1]);

shell_sort(a, argc);
for (i = 0; i < argc - 1; i++)
printf("%d ", a[i]);

printf("\n");
free(a);
return 0;

}

Purify: Out-of-Bounds Read

Purify: Suppressions

Purify: Library Functions
Library functions allow developer to customize data
collected for a given application

Memory usage profiling:

#ifdef PURIFY
...
purify_all_inuse();
...

#endif

Used in VIS together with a couple of scripts to profile
memory usage on a per-package basis

Link to libpurify_stubs.a

The Cost of Instrumentation
One data point
no instrumentation 64 s
valgrind -skin=addrcheck 860 s
valgrind -skin=memcheck 1287 s
purify 1725 s

The addrcheck skin checks the validity of addresses
but not of data

Only purify detects this uninitialized memory read

int main()
{

int a;
return a;

}

GDB and IDB
Better used through a graphical front-end

Ddd
emacs’s GUD
UPS (http://ups.sourceforge.net/main.html)
Insight (http://sources.redhat.com/insight/)

GDB and IDB largely compatible
idb -gdb is similar to gdb

otherwise, it is similar to dbx

Both can be used with the “other” compiler

There are other debuggers as well
TotalView
Idebug (Java)

The Data Display Debugger

Front-end for
C/C++ (gdb, idb)
Other languages supported by gcc (e.g., Fortran)
Perl
Python
Java

Available also for other operating systems
Works with other inferior debuggers too (e.g., dbx)
Requires X server

http://www.gnu.org/software/ddd

The Data Display Debugger

Machine Code Window

Data Window

Menu Bar

Source Window

Tool Bar

Debugger Console

Status Line

Panner

Command Tool

Scroll Bar

Resize Sash

Value Tip

Busy Indicator

The DDD Layout using Stacked Windows

DDD: Displaying Data
(gdb) graph display array[0] @ nelem

Shows array slice in the data window
Optionally use rotate button for more compact
display

(gdb) graph plot array[0] @ nelem

runs gnuplot on array slice and displays result in
new window
Plot is updated when data changes
Plot can be customized and saved
Animations are possible

DDD: Plotting

Plotting 1−D and 2−D Arrays

Rotate View

Change Style

A 2−D Array

A 1−D Array

DDD: Machine-Level Debugging

Displaying Register Values

Select register

is copied to ()

The register name

Profiling
Gcov

Gprof

VTune

Valgrind

Optimization Tips
Static branch prediction in the Pentium 4

Forward branches are not taken
Backward branches are taken

Use const; avoid register

Fit data structures to cache lines

More at
http://developer.intel.com/design/pentium4/manuals/

Profiling tools help identify
hotspots
inefficient memory layout
insufficiently tested code

Remember: Only optimize what is critical

Sampling vs. Counting

Sampling: the program counter is periodically examined

Basic block counting: the executable is instrumented so
that the frequencies of execution of all basic blocks are
recorded

Only reliable mechanism for
coverage measurement
fine tuning

Does not account for memory hierarchy

Gcov: Coverage Analysis

gcc -fprofile-arcs -ftest-coverage -o lfsr lfsr.c

./lfsr

gcov lfsr.c

100.00% of 10 source lines executed in file lfsr.c

Creating lfsr.c.gcov.

Gcov: Coverage Analysis
int main()

1 {

1 unsigned int r = 1;

1 int i;

1000000001 for (i = 0; i < 1000000000; i++) {

1000000000 unsigned int b = r & 1;

1000000000 r >>= 1;

1000000000 if (b)

500007631 r ˆ= 0x8805;

}

1 printf("%u\n", r);

1 exit(0);

}

Gprof
gcc -o lfsr -g -pg -fprofile-arcs -O3 \
-mcpu=pentium4 lfsr.c

./lfsr
gprof --line --flat-profile lfsr

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self
time seconds seconds name
61.59 8.11 8.11 main (lfsr.c:13)
28.91 11.91 3.81 main (lfsr.c:17)
3.19 12.33 0.42 main (lfsr.c:14)
3.19 12.75 0.42 main (lfsr.c:15)
2.89 13.13 0.38 main (lfsr.c:16)
0.23 13.16 0.03 main (lfsr.c:14)

IBM Rational Quantify and Purecov

Basic-block counting profiling

Call graph analysis

Source annotation

Intel VTune for Linux

vtl: command line version of the performance
analyzer for Linux

Sampling: non-intrusive, system-wide profiling
relies on the CPU performance monitoring registers

Call graph: low overhead analysis of program flow
requires instrumentation

http://www.intel.com/software/products/vtune/vlin/
Current release is 1.1
Several Red Hat and SUSE releases supported

VTune: Sampling
vtl activity -c sampling run

Runs the sampling collector for all processes
Automatically calibrates collection parameters
Collects data on clock ticks and retired instructions

vtl show

Displays activities that have been run for a project

vtl view a1::r1 -processes

Presents the results of activity a1::r1 organized by
process

vtl -help -c sampling

Shows what events can be sampled

VTune: Call Graph
vtl activity -c callgraph -app ./mypgm \
-moi ./mypgm run

Runs the callgraph collector for mypgm
Performs instrumentation (including library functions)
Collects function call data

vtl show

Displays activities that have been run for a project

vtl view a1::r1 -functions

Shows timing information for each function
Use -calls for call-graph edge data

vtl view a1::r1 -critical-path

Shows the critical path

Valgrind: Cache Profiling

Valgrind contains built-in support for cache profiling
valgrind -skin=cachegrind my-program

detailed simulation of L1-D, L1-I, unified L2

vg_annotate annotates source code

Cache configuration auto-detected using the CPUID
instruction

can be overridden

Valgrind: Cache Profiling
I refs: 73,173,467

I1 misses: 70,260

L2i misses: 1,734

I1 miss rate: 0.9%

L2i miss rate: 0.0%

D refs: 39,315,546 (28,535,016 rd + 10,780,530 wr)

D1 misses: 456,530 (344,528 rd + 112,002 wr)

L2d misses: 249,456 (162,814 rd + 86,642 wr)

D1 miss rate: 1.1% (1.2% + 1.0%)

L2d miss rate: 0.6% (0.5% + 0.8%)

L2 refs: 526,790 (414,788 rd + 112,002 wr)

L2 misses: 251,190 (164,548 rd + 86,642 wr)

L2 miss rate: 0.2% (0.1% + 0.8%)

The End

	Outline
	Compiling
	Compiling with GCC
	Compiling with GCC
	Compiling with ICC
	Compiling with ICC
	GCC: Profiler-Driven Optimization
	ICC: Profiler-Driven Optimization
	Debugging
	Valgrind
	Valgrind: Memory Debugging
	Valgrind: Memory Debugging
	Valgrind: Memory Debugging
	Valgrind: Memory Debugging
	Valgrind
	IBM Rational PurifyPlus
	Purify: Bad Function Parameter
	Purify: Memory Leaks
	A Sample Program
	Purify: Out-of-Bounds Read
	Purify: Suppressions
	Purify: Library Functions
	The Cost of Instrumentation
	GDB and IDB
	The Data Display Debugger
	The Data Display Debugger
	DDD: Displaying Data
	DDD: Plotting
	DDD: Machine-Level Debugging
	Profiling
	Optimization Tips
	Sampling vs. Counting
	Gcov: Coverage Analysis
	Gcov: Coverage Analysis
	Gprof
	IBM Rational Quantify and Purecov
	Intel VTune for Linux
	VTune: Sampling
	VTune: Call Graph
	Valgrind: Cache Profiling
	Valgrind: Cache Profiling
	The End

